Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2401137, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868913

ABSTRACT

Due to its decade-long progression, colorectal cancer (CRC) is most suitable for population screening to achieve a significant reduction in its incidence and mortality. DNA methylation has emerged as a potential marker for the early detection of CRC. However, the current mainstream methylation detection method represented by bisulfite conversion has issues such as tedious operation, DNA damage, and unsatisfactory sensitivity. Herein, a new high-performance CRC screening tool based on the promising specific terminal-mediated polymerase chain reaction (STEM-PCR) strategy is developed. CRC-related methylation-specific candidate CpG sites are first prescreened through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases using self-developed bioinformatics. Next, 9 homebrew colorectal cancer DNA methylated STEM‒PCR assays (ColoC-mSTEM) with high sensitivity (0.1%) and high specificity are established to identify candidate sites. The clinical diagnostic performance of these selected methylation sites is confirmed and validated by a case-control study. The optimized diagnostic model has an overall sensitivity of 94.8% and a specificity of 95.0% for detecting early-stage CRC. Taken together, ColoC-mSTEM, based on a single methylation-specific site, is a promising diagnostic approach for the early detection of CRC which is perfectly suitable for the screening needs of CRC in primary healthcare institutions.

2.
Sci Rep ; 14(1): 6320, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491085

ABSTRACT

This study aims to explore the research methodology of applying the Transformer model algorithm to Chinese word sense disambiguation, seeking to resolve word sense ambiguity in the Chinese language. The study introduces deep learning and designs a Chinese word sense disambiguation model based on the fusion of the Transformer with the Bi-directional Long Short-Term Memory (BiLSTM) algorithm. By utilizing the self-attention mechanism of Transformer and the sequence modeling capability of BiLSTM, this model efficiently captures semantic information and context relationships in Chinese sentences, leading to accurate word sense disambiguation. The model's evaluation is conducted using the PKU Paraphrase Bank, a Chinese text paraphrase dataset. The results demonstrate that the model achieves a precision rate of 83.71% in Chinese word sense disambiguation, significantly outperforming the Long Short-Term Memory algorithm. Additionally, the root mean squared error of this algorithm is less than 17, with a loss function value remaining around 0.14. Thus, this study validates that the constructed Transformer-fused BiLSTM-based Chinese word sense disambiguation model algorithm exhibits both high accuracy and robustness in identifying word senses in the Chinese language. The findings of this study provide valuable insights for advancing the intelligent development of word senses in Chinese language applications.

3.
Phytochem Anal ; 34(7): 755-771, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36529443

ABSTRACT

INTRODUCTION: Doxorubicin-induced cardiotoxicity (DIC) is a serious obstacle to oncologic treatment. Mountain cultivated ginseng (MCG) exhibits stronger pharmacological effects than cultivated ginseng (CG) mainly due to the differences in ginsenosides. However, the material basis and the underlying mechanism of the protective effects of total saponins of MCG (TSMCG) against DIC are unclear. OBJECTIVES: We aimed to elucidate the material basis and the pharmacodynamic effects of TSMCG on DIC as well as the underlying mechanisms. METHODS: To comprehensively analyze the effective substances, the chemical components of TSMCG and their prototypes or metabolites in vivo were characterized through UHPLC/Q-TOF-MS. Then, an absorbed component-target-disease network was established to explore the mechanisms underlying the protective effects of TSMCG against DIC. H9c2 cells were employed for pharmacodynamic assays. The mechanism was verified by Western blot and molecular docking simulations. RESULTS: A total of 56 main ginsenosides were identified in TSMCG, including 27 ginsenosides of PPD type, 15 ginsenosides of PPT type, two ginsenosides of OA types, and 12 ginsenosides of other types. Moreover, 55 ginsenoside prototypes or metabolites in vivo were tentatively characterized. Ginsenoside Ra1 , a differential compound between MCG and CG, could be metabolized by oxidation and deglycosylation. Network pharmacology showed that AKT1, p53, and STAT3 are core targets of 62 intersecting genes. Molecular docking results indicated that most of the ginsenosides have favorable affinity with these core targets. After doxorubicin exposure, TSMCG could increase cell viability and inhibit apoptosis in a dose-dependent manner. CONCLUSION: Our work reveals a novel comprehensive strategy to study the material basis of the protective effects of TSMCG against DIC and the underlying mechanisms through integrating in vivo substance identification, metabolic profiling, network pharmacology, pharmacodynamic evaluation, and mechanism verification.


Subject(s)
Ginsenosides , Panax , Saponins , Saponins/pharmacology , Ginsenosides/pharmacology , Panax/chemistry , Cardiotoxicity , Molecular Docking Simulation , Network Pharmacology , Doxorubicin/pharmacology , Doxorubicin/metabolism
4.
J Ethnopharmacol ; 301: 115831, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36244638

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng C. A. Meyer is a traditional Chinese herbal medicine, which has been used in China for more than 2000 years. Its traditional effect of "invigorating vitality" is mainly reflected in anti-fatigue. However, due to the difficulty of identification of polysaccharide structure, there are few reports on homogeneous ginseng polysaccharide, and the molecular mechanism of its anti-fatigue effect remains to be further explored. AIM OF THE STUDY: In order to find the homogenous ginseng polysaccharide with the most anti-fatigue effect, this study is for the first time extracted, isolated and structurally identified polysaccharide monomer from Mountain Cultivated Ginseng (MCG). Then the anti-fatigue activity and molecular mechanism were studied. MATERIALS AND METHODS: The structure of ginseng acidic polysaccharide APS-1 prepared by high performance gel permeation chromatography (HPGPC) was determined by acid hydrolysis/HPLC, methylation/GC-MS and NMR analysis. Anti-fatigue effect was evaluated by exhaustive swimming model, and AMPK axis-related proteins were detected by Western blot. RESULTS: APS-1 significantly prolonged fatigue tolerance time, alleviated accumulation of BLA, LDH and BUN, increased activities of SOD and CAT, alleviated oxidative damage caused by MDA, increased activity of CK, regulated glycolysis, and alleviated muscle fiber contraction. The expressions of LKB1, p-AMPK, PGC-1α and Glut4 in muscle were significantly up-regulated. CONCLUSIONS: The anti-fatigue effect of APS-1 was significantly, and the molecular mechanism may be related to the activation of AMPK axis signaling pathway to improve glucose uptake and mitochondrial function.


Subject(s)
Panax , Panax/chemistry , AMP-Activated Protein Kinases , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Antioxidants/pharmacology , Acids
5.
Molecules ; 27(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35164202

ABSTRACT

The cause of liver damage by using black cohosh preparation has been concerned but remains unclear. After a preliminary investigation, the black cohosh medicinal materials sold in the market were adulterated with Asian cohosh (Cimicifuga) without removing the fibrous roots. The safety of Cimicifuga rhizome and fibrous roots is unknown and has not been reported. Therefore, in this paper, the rhizome and fibrous roots of Cimicifuga dahurica (Turcz.) Maxim (C. dahurica) were completely separated, extracted with 70% ethanol, and freeze-dried to obtain crude rhizome extract (RC) and fibrous roots extract (FRC). UHPLC-Q-TOF-MS was used to identify 39 compounds in the rhizome and fibrous roots of Cimicifuga, mainly saponins and phenolic acids. In the L-02 cytotoxicity experiment, the IC50 of fibrous roots (1.26 mg/mL) was slightly lower than that of rhizomes (1.417 mg/mL). In the 90-day sub-chronic toxicity study, the FRC group significantly increased the level of white blood cells, ALP, ALT, AST, BILI and CHOL (p < 0.05); large area of granular degeneration and balloon degeneration occurred in liver tissue; and the expression of p-NF-kB in the nucleus increased in a dose-dependent manner. Overall, Fibrous roots of Cimicifuga are at risk of hepatotoxicity and should be strictly controlled and removed during the processing.


Subject(s)
Cimicifuga/chemistry , Liver/drug effects , Plant Extracts/toxicity , Plant Roots/chemistry , Animals , Female , Humans , Male , Rats
6.
Plant Sci ; 287: 110190, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31481213

ABSTRACT

Phosphatidic acid (PA) is a lipid secondary messenger involved in intracellular signaling in eukaryotes. It has been confirmed that PA mediates salt stress signaling by promoting activation of Mitogen-activated Protein Kinase 6 (MPK6) which phosphorylates Na+/H+ antiporter SOS1. However, the MPK6-upstream kinases and their relationship to PA remain unclear. Here, we found that, among the six tested Arabidopsis Mitogen-activated Protein Kinase Kinases (MKKs), PA specifically bound to MKK7 and MKK9 which phosphorylate MPK6, and promoted the activation of MKK7/MKK9. Based on phenotypic and physiological analyses, we found that MKK7 and MKK9 positively regulate Arabidopsis salt tolerance and are functionally redundant. NaCl treatment can induce significant increase in MKK7/MKK9 activities, and this depends, in part, on the Phospholipase Dα1 (PLDα1). MKK7 and MKK9 also mediate the NaCl-induced activation of MPK6. Furthermore, PA or NaCl treatment could induce translocation of MKK7/MKK9 to the plasma membrane, whereas this translocation disappeared in pldα1. These results indicate that PA binds to MKK7 and MKK9, increases their kinase activity and plasma membrane localization during Arabidopsis response to salt stress. Together with the PA-MPK6-SOS1 pathway identified previously, this mechanism may maximize the signal transduction efficiency, providing novel insights into the link between lipid signaling and MAPK cascade.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , MAP Kinase Kinase 7/metabolism , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidic Acids/pharmacology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , MAP Kinase Kinase 7/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Salt Stress , Salt Tolerance/genetics
7.
Plant Cell ; 24(11): 4555-76, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23150630

ABSTRACT

Membrane lipids play fundamental structural and regulatory roles in cell metabolism and signaling. Here, we report that phosphatidic acid (PA), a product of phospholipase D (PLD), regulates MAP65-1, a microtubule-associated protein, in response to salt stress. Knockout of the PLDα1 gene resulted in greater NaCl-induced disorganization of microtubules, which could not be recovered during or after removal of the stress. Salt affected the association of MAP65-1 with microtubules, leading to microtubule disorganization in pldα1cells, which was alleviated by exogenous PA. PA bound to MAP65-1, increasing its activity in enhancing microtubule polymerization and bundling. Overexpression of MAP65-1 improved salt tolerance of Arabidopsis thaliana cells. Mutations of eight amino acids in MAP65-1 led to the loss of its binding to PA, microtubule-bundling activity, and promotion of salt tolerance. The pldα1 map65-1 double mutant showed greater sensitivity to salt stress than did either single mutant. These results suggest that PLDα1-derived PA binds to MAP65-1, thus mediating microtubule stabilization and salt tolerance. The identification of MAP65-1 as a target of PA reveals a functional connection between membrane lipids and the cytoskeleton in environmental stress signaling.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Microtubules/metabolism , Phosphatidic Acids/metabolism , Sodium Chloride/pharmacology , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis/physiology , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Base Sequence , Cell Membrane/metabolism , Dinitrobenzenes/pharmacology , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Phospholipase D/genetics , Phospholipase D/metabolism , Protein Binding , Salt Tolerance , Seedlings , Sequence Alignment , Sequence Analysis, DNA , Signal Transduction , Stress, Physiological , Sulfanilamides/pharmacology , Tubulin Modulators/pharmacology
8.
New Phytol ; 188(3): 762-73, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20796215

ABSTRACT

• Phospholipase D (PLD) hydrolyzes phospholipids to produce phosphatidic acid (PA) and a head group, and is involved in the response to various environmental stresses, including salinity. Here, we determined the roles of PLDα and PA in the mediation of salt (NaCl)-stress signaling through the regulation of mitogen-activated protein kinase (MAPK or MPK) in Arabidopsis thaliana. • NaCl-induced changes in the content and composition of PA were quantitatively profiled by electrospray ionization-tandem mass spectrometry (ESI-MS/MS). A specific PA species (a MAPK 16:0-18:2 PA), which was increased in abundance by exposure to NaCl, bound to a MPK6, according to filter binding and ELISA. The effect of PA on MPK6 activity was tested using in-gel analysis. • 16:0-18:2 PA stimulated the activity of MPK6 immunoprecipitated from Arabidopsis leaf extracts. Treatment with NaCl induced a transient activation of MPK6 in wild-type plant, but the activation was abolished in the pldα1 plant mutant. A plasma membrane Na(+)/H(+) antiporter (SOS1) was identified as a downstream target of MPK6. MPK6 phosphorylated the C-terminal fragment of SOS1. The MPK6 phosphorylation of SOS1 was stimulated by treatment with NaCl, as well as directly by PA. • These results suggest that PA plays a critical role in coupling MAPK cascades in response to salt stress.


Subject(s)
Arabidopsis/metabolism , Mitogen-Activated Protein Kinase 6/metabolism , Phosphatidic Acids/metabolism , Salt Tolerance/physiology , Sodium Chloride/metabolism , Arabidopsis/enzymology , Arabidopsis Proteins/metabolism , Cell Membrane , Genes, Plant , Mitogen-Activated Protein Kinase 6/genetics , Mutation , Phospholipase D/metabolism , Phosphorylation , Plant Leaves , Signal Transduction/physiology , Sodium-Hydrogen Exchangers/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...