Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 526
Filter
1.
Carbohydr Polym ; 339: 122235, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823906

ABSTRACT

This study explored the physicochemical properties and structural characteristics of Agrocybe cylindracea polysaccharides at four developmental stages, as well as their dynamic evolution during maturation. Results showed that the polysaccharides from A. cylindracea water extract exhibited similar structural characteristics across all four maturity stages, despite a significant reduction in yields. Four water-soluble heteroglycans, including one high molecular weight (ACPM-Et50-I) and three low molecular weight (ACPM-Et50-II, ACPM-Et60, ACPM-Et80), were isolated from A. cylindracea at each maturity stage. ACPM-Et50-I was identified as branched heterogalactans, while ACPM-Et60 and ACPM-Et80 were branched heteroglucans. However, ACPM-Et50-II was characterized as a branched glucuronofucogalactoglucan at the tide-turning stage but a glucuronofucoglucogalactan at the pileus expansion stage due to the increase of its α-(1 â†’ 6)-D-Galp. In general, although the structural skeletons of most A. cylindracea heteroglycans were similar during maturation as shown by their highly consistent glycosyl linkages, there were still differences in the distribution of some heteroglucans. This work has for the first time reported a glucuronofucogalactoglucan in A. cylindracea and its dynamic evolution during maturation, which may facilitate the potential application of A. cylindracea in food and biomedicine industries.


Subject(s)
Agrocybe , Water , Water/chemistry , Agrocybe/chemistry , Glucans/chemistry , Polysaccharides/chemistry , Molecular Weight
2.
Int J Biol Macromol ; 272(Pt 1): 132744, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38834122

ABSTRACT

Dictyophora indusiata is a common edible mushroom with great potential in the field of medicine against metabolic disorders, inflammation, and immunodeficiency. Our previous studies have shown that different fractions of the polysaccharide from Dictyophora indusiata (DIP) have various structural characteristics and morphology. However, the impact of the structural features on the protective effects of DIP against metabolic syndrome remains unclear. In this study, three distinct polysaccharide fractions have been extracted from Dictyophora indusiata and a high-fat diet-induced metabolic syndrome (MetS) was constructed in mice. The effects of these fractions on a range of MetS-associated endpoints, including abnormal blood glucose, lipid profiles, body fat content, liver function, intestinal microbiota and their metabolites were investigated. Through correlation analysis, the potential link between the monosaccharide composition of the polysaccharides and their biological activities was determined. The study aimed to explore the potential mechanisms and ameliorative effects of these polysaccharide fractions on MetS, thereby providing statistical evidence for understanding the relationship between monosaccharides composition of Dictyophora indusiata polysaccharides and their potential utility in treating metabolic disorders.

3.
Article in English, Spanish | MEDLINE | ID: mdl-38844070

ABSTRACT

INTRODUCTION AND OBJECTIVES: Coronary microvascular dysfunction (CMD) is highly prevalent and is recognized as an important clinical entity in patients with coronary artery disease (CAD). Nevertheless, the association of CMD with adverse cardiovascular events in the spectrum of CAD has not been systemically quantified. METHODS: We searched electronic databases for studies on patients with CAD in whom coronary microvascular function was measured invasively, and clinical events were recorded. The primary endpoint was major adverse cardiac events (MACE), and the secondary endpoint was all-cause death. Estimates of effect were calculated using a random-effects model from published risk ratios. RESULTS: We included 27 studies with 11 404 patients. Patients with CMD assessed by invasive methods had a higher risk of MACE (RR, 2.18; 95%CI, 1.80-2.64; P < .01) and all-cause death (RR, 1.88; 95%CI, 1.55-2.27; P < .01) than those without CMD. There was no significant difference in the impact of CMD on MACE (interaction P value = .95) among different invasive measurement modalities. The magnitude of risk of CMD assessed by invasive measurements for MACE was greater in acute coronary syndrome patients (RR, 2.84, 95%CI, 2.26-3.57; P < .01) than in chronic coronary syndrome patients (RR, 1.77, 95%CI, 1.44-2.18; P < .01) (interaction P value < .01). CONCLUSIONS: CMD based on invasive measurements was associated with a high incidence of MACE and all-cause death in patients with CAD. The magnitude of risk for cardiovascular events in CMD as assessed by invasive measurements was similar among different methods but varied among CAD populations.

4.
Foods ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790846

ABSTRACT

The objective of this study was to investigate the feasibility of the mixture of tremella polysaccharide (TP) and citrus pectin (CP) as an emulsifier by evaluating its emulsifying ability/stability. The results showed that the TP:CP ratio of 5:5 (w/w) could effectively act as an emulsifier. CP, owing its lower molecular weight and highly methyl esterification, facilitated the emulsification of oil droplets, thereby promoting the dispersion of droplets. Meanwhile, the presence of TP enhanced the viscosity of emulsion system and increased the electrostatic interactions and steric hindrance, therefore hindering the migration of emulsion droplets, reducing emulsion droplets coalesce, and enhancing emulsion stability. The emulsification and stabilization performances were influenced by the molecular weight, esterified carboxyl groups content, and electric charge of TP and CP, and the potential mechanism involved their impact on the buoyant force of droplet size, viscosity, and steric hindrance of emulsion system. The emulsions stabilized by TP-CP exhibited robust environmental tolerance, but demonstrated sensitivity to Ca2+. Conclusively, the study demonstrated the potential application of the mixture of TP and CP as a natural polysaccharide emulsifier.

5.
J Agric Food Chem ; 72(22): 12810-12821, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38778434

ABSTRACT

Polysaccharides derived from Agrocybe cylindracea have been demonstrated to exhibit various bioactivities. However, studies on their structural characteristics during the growth process are limited. This study aimed to compare the physicochemical properties and structural characteristics of alkali-extracted polysaccharides from A. cylindracea fruiting bodies (JACP) across four growth stages. Results showed that the extraction yields and protein levels of JACP declined along with the growth of A. cylindracea, while the contents of neutral sugar and glucose increased significantly. However, JACP exhibited structural characteristics similar to those across the four stages. Four polysaccharide subfractions were isolated from each growth stage, including JACP-Et30, JACP-Et50, JACP-Et60, and JACP-Et70. JACP-Et30 from the four stages and JACP-Et50 from the initial three stages were identified as heteroglucans with ß-1,3-d-Glcp and ß-1,6-d-Glcp residues as main chains, respectively. However, other subfractions were considered as ß-1,6-d-glucans containing minor glucuronic acid. These subfractions were predominantly replaced by Glcp residues at the O-3 and O-6 positions. Overall, while JACP exhibited variable physicochemical properties, its structural characteristics remained stable during the growth process, offering new insights into its potential applications in the food and medicinal industries.


Subject(s)
Agrocybe , Fruiting Bodies, Fungal , Polysaccharides , Agrocybe/chemistry , Agrocybe/growth & development , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Alkalies/chemistry
6.
J Agric Food Chem ; 72(22): 12752-12761, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779924

ABSTRACT

This study investigated the transformation of polyphenols, including free and bound polyphenols during the fermentation of wolfberry juice by Lactobacillus plantarum NCU137. Results indicated that fermentation significantly increased the free polyphenols content and released bound polyphenols, enhancing the antioxidant activity. Analysis showed that there were 19 free polyphenols, mainly scopoletin, pyrogallol, and dihydroferulic acid, and 16 bound polyphenols, especially p-coumaric acid, feruloyl hexoside, and caffeic acid. A significant correlation was observed between the generation and degradation of polyphenols, and specific bound polyphenols peaked during the 24-48 h fermentation. Furthermore, reduced surface roughness and galacturonic acid content in wolfberry residue, along with increased pectinase activity, suggested substantial pectin degradation in the cell wall, which may be associated with the release of polyphenols, due to pectin serving as carriers for bound polyphenols. The fermentation also increased polyphenol oxidase and peroxidase activity, contributing to polyphenol breakdown. These findings provide insights for improving wolfberry juice production.


Subject(s)
Antioxidants , Fermentation , Fruit and Vegetable Juices , Fruit , Lactobacillus plantarum , Lycium , Polyphenols , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Polyphenols/metabolism , Polyphenols/chemistry , Antioxidants/metabolism , Antioxidants/chemistry , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Fruit/metabolism , Fruit/microbiology , Lycium/chemistry , Lycium/metabolism , Pectins/metabolism , Pectins/chemistry
7.
Food Funct ; 15(11): 5868-5881, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38727142

ABSTRACT

The aim of this study was to investigate the feasibility of soy protein isolate (SPI) gels added with Tremella polysaccharides (TPs) and psyllium husk powder (PHP) as 3D printing inks for developing dysphagia-friendly food and elucidate the potential mechanism of TPs and PHP in enhancing the printing and swallowing performance of SPI gels. The results indicated that the SPI gels with a TP : PHP ratio of 3 : 7 could be effectively used as printing inks to manufacture dysphagia-friendly food. The addition of TPs increased the free water content, resulting in a decrease in the viscosity of the SPI gels, which, in turn, reduced the line width of the 3D-printed product and structural strength of the gel system. The addition of PHP increased disulfide bond interactions and excluded volume interactions, which determined the mechanical strength of SPI gels and increased the line width of the printed product. The synergistic effects between TPs and PHP improved the printing precision and structural stability. This study presents meaningful insights for the utilization of 3D printing in the creation of dysphagia-friendly food using protein-polysaccharide complexes.


Subject(s)
Deglutition Disorders , Gels , Polysaccharides , Printing, Three-Dimensional , Psyllium , Soybean Proteins , Soybean Proteins/chemistry , Polysaccharides/chemistry , Gels/chemistry , Psyllium/chemistry , Humans , Ink , Powders/chemistry , Viscosity
8.
iScience ; 27(4): 109513, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38600975

ABSTRACT

Early detection of left ventricular remodeling (LVR) is crucial. While cardiac magnetic resonance (CMR) provides valuable information, it has limitations. Coronary angiography-derived fractional flow reserve (caFFR) and index of microcirculatory resistance (caIMR) offer viable alternatives. 157 patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention were prospectively included. 23.6% of patients showed LVR. Machine learning algorithms constructed three LVR prediction models: Model 1 incorporated clinical and procedural parameters, Model 2 added CMR parameters, and Model 3 included echocardiographic and functional parameters (caFFR and caIMR) with Model 1. The random forest algorithm showed robust performance, achieving AUC of 0.77, 0.84, and 0.85 for Models 1, 2, and 3. SHAP analysis identified top features in Model 2 (infarct size, microvascular obstruction, admission hemoglobin) and Model 3 (current smoking, caFFR, admission hemoglobin). Findings indicate coronary physiology and echocardiographic parameters effectively predict LVR in patients with STEMI, suggesting their potential to replace CMR.

9.
Int J Biol Macromol ; 269(Pt 1): 131799, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677677

ABSTRACT

Polysaccharides are the important bioactive macromolecules in Agrocybe cylindracea, but their changes are as yet elusive during developmental process. This study investigated the dynamic changes of polysaccharides from A. cylindracea fruiting body water extract at four developmental stages and its structure characteristics. Results revealed that the polysaccharides from A. cylindracea water extract significantly increased at the pileus expansion stage and the increased fraction could be α-glucan. The further purification and identification indicated that this α-glucan was a glycogen. It had typical morphology of ß particles with a molecular weight of 1375 kDa. Its backbone comprised α-D-(1 â†’ 4)-Glcp and α-D-(1 â†’ 4,6)-Glcp residues at a ratio of 5:1, terminated by α-D-Glcp residue. Rheological behavior suggested that it was a Newtonian fluid at the concentration of 1 %. In addition, despite both the glycogen and natural starch were composed of D-glucose, they exhibited the entirely distinct Maltese cross characteristic and unique crystalline structure. This study is the first to demonstrate the presence of abundant glycogen in the pileus expansion stage of A. cylindracea, which provides new insights on the change patterns of fungal polysaccharides.


Subject(s)
Agrocybe , Glucans , Water , Glucans/chemistry , Water/chemistry , Agrocybe/chemistry , Molecular Weight , Glycogen/metabolism , Glycogen/chemistry , Fruiting Bodies, Fungal/chemistry , Rheology
10.
Foods ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38672913

ABSTRACT

Acid hydrolysis serves as the primary method for determining the monosaccharide composition of polysaccharides. However, inappropriate acid hydrolysis conditions may catalyze the breakdown of monosaccharides such as fructans (Fru), generating non-sugar by-products that affect the accuracy of monosaccharide composition analysis. In this study, we determined the monosaccharide recovery rate and non-sugar by-product formation of inulin-type fructan (ITF) and Fru under varied acid hydrolysis conditions using HPAEC-PAD and UPLC-Triple-TOF/MS, respectively. The results revealed significant variations in the recovery rate of Fru within ITF under different hydrolysis conditions, while glucose remained relatively stable. Optimal hydrolysis conditions for achieving a relatively high monosaccharide recovery rate for ITF entailed 80 °C, 2 h, and 1 M sulfuric acid. Furthermore, we validated the stability of Fru during acid hydrolysis. The results indicated that Fru experienced significant degradation with an increasing temperature and acid concentration, with a pronounced decrease observed when the temperature exceeds 100 °C or the H2SO4 concentration surpasses 2 M. Finally, three common by-products associated with Fru degradation, namely 5-hydroxymethyl-2-furaldehyde, 5-methyl-2-furaldehyde, and furfural, were identified in both Fru and ITF hydrolysis processes. These findings revealed that the degradation of Fru under acidic conditions was a vital factor leading to inaccuracies in determining the Fru content during ITF monosaccharide analysis.

11.
Microbiol Res ; 284: 127733, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678680

ABSTRACT

Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.


Subject(s)
Bacteria , Bacterial Physiological Phenomena , Extracellular Vesicles , Extracellular Vesicles/metabolism , Bacteria/metabolism , Bacteria/genetics , Humans , Host-Pathogen Interactions , Animals , Host Microbial Interactions/physiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
12.
Eur Heart J Open ; 4(2): oeae009, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38544919

ABSTRACT

Aims: With an aging population and better survival rates, coronary artery disease (CAD) with multimorbidity has become more prevalent, complicating treatment and impacting life quality and longevity. This study identifies multimorbidity patterns in CAD patients and their effect on clinical outcomes, emphasizing treatment strategies. Methods and results: The study analysed data from the DCEM registry (173 459 patients) and BleeMACS cohort (15 401 patients) to categorize CAD patients into three multimorbidity patterns. The focus was on how these patterns influence outcomes, especially concerning the efficacy and safety of dual antiplatelet therapy (DAPT). The study identified three distinct multimorbidity patterns: Class 1 encompassed cardiovascular-kidney-metabolic comorbidities indicating the highest risk; Class 2 included hypertension-dyslipidaemia comorbidities, reflecting intermediate risk; and Class 3 involved non-specific comorbidities, indicating the lowest risk. Class 1 patients demonstrated a six-fold increase in in-hospital mortality and a four-fold increase in severe in-hospital complications compared with Class 3. Over a 1-year period, Class 1 was associated with the highest risk, displaying a significant increase in all-cause mortality [adjusted hazard ratio (HR) 1.87, 95% confidence interval (CI) 1.52-2.31, P < 0.001] and a notable risk for major bleeding (adjusted HR 1.74, 95% CI 1.36-2.24, P < 0.001) compared with Class 3. The use of DAPT, particularly aspirin combined with clopidogrel, significantly reduced the 1-year all-cause mortality in Class 1 patients (adjusted HR 0.60, 95% CI 0.37-0.98, P = 0.04) without increasing in major bleeding. Conclusion: Coronary artery disease patients with a cardiovascular-kidney-metabolic profile face the highest mortality risk. Targeted DAPT, especially aspirin and clopidogrel, effectively lowers mortality without significantly raising bleeding risks. Registration: DCEM registry (NCT05797402) and BleeMACS registry (NCT02466854).

13.
Food Funct ; 15(7): 3246-3258, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38446134

ABSTRACT

Barley (Hordeum vulgare L.) is rich in starch and non-starch polysaccharides (NSPs), especially ß-glucan and arabinoxylan. Genotypes and isolation methods may affect their structural characteristics, properties and biological activities. The structure-activity relationships of NSPs in barley have not been paid much attention. This review summarizes the extraction methods, structural characteristics and physicochemical properties of barley polysaccharides. Moreover, the roles of barley ß-glucan and arabinoxylan in the immune system, glucose metabolism, regulation of lipid metabolism and absorption of mineral elements are summarized. This review may help in the development of functional products in barley.


Subject(s)
Hordeum , beta-Glucans , Hordeum/chemistry , Polysaccharides/chemistry , Starch/metabolism , beta-Glucans/chemistry
14.
Int J Biol Macromol ; 267(Pt 1): 131202, 2024 May.
Article in English | MEDLINE | ID: mdl-38556225

ABSTRACT

Fucoidan is widely applied in food and pharmaceutical industry for the promising bioactivities. Low-molecular weight hydrolyzed fucoidan has gained attention for its beneficial health effects. Here, the modulation on microbiome and metabolome features of fucoidan and its acidolyzed derivatives (HMAF, 1.5-20 kDa; LMAF, <1.5 kDa) were investigated through human fecal cultures. Fucose is the main monosaccharide component in fucoidan and LMAF, while HMAF contains abundant glucuronic acid. LMAF fermentation resulted in the highest production of short-chain fatty acids, with acetate and propionate reaching maximum levels of 13.46 mmol/L and 11.57 mmol/L, respectively. Conversely, HMAF exhibited a maximum butyrate production of 9.28 mmol/L. Both fucoidan and acidolyzed derivatives decreased the abundance of Escherichia-Shigella and Klebsiella in human fecal cultures. Fucoidan and HMAF prefer to improve the abundance of Bacteroides. However, LMAF showed positive influence on Bifidobacterium, Lactobacillus, and Megamonas. Untargeted metabolome indicated that fucoidan and its derivatives mainly altered the metabolic level of lipids, indole, and their derivatives, with fucoidan and HMAF promoting higher level of indole-3-propionic acid and indole-3-carboxaldehyde compared to LMAF. Considering the chemical structural differences, this study suggested that hydrolyzed fucoidan can provide potential therapeutic applications for targeted regulation of microbial communities.


Subject(s)
Feces , Fermentation , Gastrointestinal Microbiome , Metabolome , Polysaccharides , Prebiotics , Humans , Feces/microbiology , Polysaccharides/metabolism , Polysaccharides/chemistry , Polysaccharides/pharmacology , Metabolome/drug effects , Gastrointestinal Microbiome/drug effects , Hydrolysis
15.
Circulation ; 149(16): 1258-1267, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38406848

ABSTRACT

BACKGROUND: Postprocedural anticoagulation (PPA) is frequently administered after primary percutaneous coronary intervention in ST-segment-elevation myocardial infarction, although no conclusive data support this practice. METHODS: The RIGHT trial (Comparison of Anticoagulation Prolongation vs no Anticoagulation in STEMI Patients After Primary PCI) was an investigator-initiated, multicenter, randomized, double-blind, placebo-controlled, superiority trial conducted at 53 centers in China. Patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention were randomly assigned by center to receive low-dose PPA or matching placebo for at least 48 hours. Before trial initiation, each center selected 1 of 3 PPA regimens (40 mg of enoxaparin once daily subcutaneously; 10 U·kg·h of unfractionated heparin intravenously, adjusted to maintain activated clotting time between 150 and 220 seconds; or 0.2 mg·kg·h of bivalirudin intravenously). The primary efficacy objective was to demonstrate superiority of PPA to reduce the primary efficacy end point of all-cause death, nonfatal myocardial infarction, nonfatal stroke, stent thrombosis (definite), or urgent revascularization (any vessel) within 30 days. The key secondary objective was to evaluate the effect of each specific anticoagulation regimen (enoxaparin, unfractionated heparin, or bivalirudin) on the primary efficacy end point. The primary safety end point was Bleeding Academic Research Consortium 3 to 5 bleeding at 30 days. RESULTS: Between January 10, 2019, and September 18, 2021, a total of 2989 patients were randomized. The primary efficacy end point occurred in 37 patients (2.5%) in both the PPA and placebo groups (hazard ratio, 1.00 [95% CI, 0.63 to 1.57]). The incidence of Bleeding Academic Research Consortium 3 to 5 bleeding did not differ between the PPA and placebo groups (8 [0.5%] vs 11 [0.7%] patients; hazard ratio, 0.74 [95% CI, 0.30 to 1.83]). CONCLUSIONS: Routine PPA after primary percutaneous coronary intervention was safe but did not reduce 30-day ischemic events. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03664180.


Subject(s)
Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , Anticoagulants/adverse effects , Enoxaparin/adverse effects , Hemorrhage/chemically induced , Hemorrhage/drug therapy , Heparin/adverse effects , Myocardial Infarction/drug therapy , Neoplasm Recurrence, Local/drug therapy , Peptide Fragments/adverse effects , Percutaneous Coronary Intervention/adverse effects , Recombinant Proteins , ST Elevation Myocardial Infarction/drug therapy , Treatment Outcome
16.
Sci China Life Sci ; 67(5): 913-939, 2024 May.
Article in English | MEDLINE | ID: mdl-38332216

ABSTRACT

Fulminant myocarditis is an acute diffuse inflammatory disease of myocardium. It is characterized by acute onset, rapid progress and high risk of death. Its pathogenesis involves excessive immune activation of the innate immune system and formation of inflammatory storm. According to China's practical experience, the adoption of the "life support-based comprehensive treatment regimen" (with mechanical circulation support and immunomodulation therapy as the core) can significantly improve the survival rate and long-term prognosis. Special emphasis is placed on very early identification,very early diagnosis,very early prediction and very early treatment.


Subject(s)
Myocarditis , Myocarditis/diagnosis , Myocarditis/therapy , Humans , China , Adult , Cardiology/methods , Cardiology/standards , Prognosis , Societies, Medical
17.
JACC Asia ; 4(1): 73-83, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222256

ABSTRACT

Background: Strategies targeting standard modifiable cardiovascular risk factors (SMuRFs), including hypertension, diabetes, hypercholesterolemia, and smoking, have been well established to prevent coronary heart disease. However, few studies have evaluated the management and outcomes of older patients without SMuRFs after myocardial infarction. Objectives: The authors sought to evaluate the profile of patients with ST-segment elevation myocardial infarction (STEMI) aged ≥75 years without SMuRFs. Methods: This study is based on the CCC-ACS (Improving Care for Cardiovascular Disease in China-Acute Coronary Syndrome) project. Patients aged ≥75 years with a first presentation of STEMI were enrolled in this study between November 2014 and December 2019. Modified Poisson regression was used to evaluate the association between SMuRF-less and in-hospital outcomes. Results: Among 10,775 patients with STEMI aged ≥75 years, 1,633 (15.16%) had no SMuRFs. Compared with those with SMuRF, SMuRF-less patients received less evidence-based treatment. In-hospital mortality was similar among patients with and without SMuRFs (5.44% vs 5.14%; P = 0.630). However, after adjustment for patient characteristics and treatment, being SMuRF-less was significantly associated with a reduced risk of mortality (RR: 0.80; 95% CI: 0.65-0.99; P = 0.043). SMuRF-less patients also had a significantly reduced risk of in-hospital death when only adjusting for in-hospital treatment (RR: 0.78; 95% CI: 0.63-0.98; P = 0.030), regardless of patient characteristics. Conclusions: Approximately 1 in 7 STEMI patients in China ≥75 years old had no SMuRFs. The similar mortality in patients with and without SMuRF can be partially explained by the inadequate in-hospital treatment of SMuRF-less patients. The quality of care for older patients without SMuRF should be improved. (CCC Project-Acture Coronary Syndrome; NCT02306616).

18.
Carbohydr Polym ; 329: 121782, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38286552

ABSTRACT

Glucans are the most abundant class of macromolecule polymers in fungi, which are commonly found in Ascomycota and Basidiomycota. Fungal glucans are not only essential for cell integrity and function but also crucial for the immense industrial interest in high value applications. They present a variety of structural characteristics at the nanoscale due to the high regulation of genes and the involvement of stochastic processes in synthesis. However, although recent findings have demonstrated the genes of glucans synthesis are relatively conserved across diverse fungi, the formation and organization of diverse glucan structures is still unclear in fungi. Here, we summarize the structural features of fungal glucans and the recent developments in the mechanisms of glucans biosynthesis. Furthermore, we propose the engineering strategies of targeted glucan synthesis and point out the remaining challenges in the synthetic process. Understanding the synthesis process of diverse glucans is necessary for tailoring high value glucan towards specific applications. This engineering strategy contributes to enable the sustainable and efficient production of glucan diversity.


Subject(s)
Basidiomycota , beta-Glucans , Glucans , beta-Glucans/chemistry , Cell Wall/chemistry
19.
Rev Esp Cardiol (Engl Ed) ; 77(2): 129-137, 2024 Feb.
Article in English, Spanish | MEDLINE | ID: mdl-37453536

ABSTRACT

INTRODUCTION AND OBJECTIVES: A new computed tomography-derived fractional flow reserve (CT-FFR) technique with a "coarse-to-fine subpixel" algorithm has been developed to generate precise lumen contours. The aim of this study was to assess the diagnostic performance of this new CT-FFR algorithm for discriminating lesion-specific ischemia using wire-based FFR ≤ 0.80 as the reference standard in patients with coronary artery disease. METHODS: This prospective, multicenter study screened 330 patients undergoing coronary CT angiography (CCTA) and invasive FFR (median interval 2 days) from 6 tertiary hospitals. CT-FFR was evaluated in a blinded fashion with a "coarse-to-fine subpixel" algorithm for lumen contour. RESULTS: Between March 2019 and May 2020, we included 316 patients with 324 vessels. There was a good correlation between CT-FFR and invasive FFR (r=0.76, P<.001). The diagnostic sensitivity, specificity, and accuracy on a per-vessel level were 95.3%, 89.8%, and 92.0% for CT-FFR, and 96.4%, 26.4%, and 53.1% for CCTA>50% stenosis, respectively. CT-FFR showed improved discrimination of ischemia compared with CCTA alone overall (AUC, 0.95 vs 0.74, P<.001) and in intermediate (AUC, 0.96 vs 0.62, P<.001) and "gray zone" lesions (AUC, 0.88 vs 0.61, P<.001). The diagnostic specificity, accuracy, and AUC for CT-FFR (71.9%, 82.8%, and 0.84) outperformed CCTA (9.4%, 48.3%, and 0.66) in patients or in vessels with severe calcification (all P<.05). CONCLUSIONS: CT-FFR with a new "coarse-to-fine subpixel" algorithm showed high performance in identifying hemodynamically significant stenosis. The diagnostic performance of CT-FFR was superior to that of CCTA in intermediate lesions, "gray zone" lesions, and severely calcified lesions. Clinical Trial Register: NCT04731285.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Humans , Coronary Stenosis/diagnosis , Constriction, Pathologic , Prospective Studies , Coronary Artery Disease/diagnosis , Tomography, X-Ray Computed , Coronary Angiography/methods , Computed Tomography Angiography/methods , Ischemia , Algorithms , Predictive Value of Tests , Retrospective Studies
20.
J Magn Reson Imaging ; 59(2): 548-560, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37222658

ABSTRACT

BACKGROUND: It is uncertain how various degree of glycemic status affect left ventricular (LV) myocardial strain in ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PPCI). PURPOSE: To investigate the relationship of glycemic status and myocardial strain in STEMI patients. STUDY TYPE: Prospective cohort study. POPULATION: 282 STEMI patients with cardiac magnetic resonance imaging 5 ± 2 days post-PPCI. Patients were divided into three groups based on the level of glycated hemoglobin A1c (HbA1c) (group 1: HbA1c < 5.7%; group 2: 5.7% ≤ HbA1c < 6.5%; group 3: HbA1c ≥ 6.5%). FIELD STRENGTH/SEQUENCE: 3.0-T; late gadolinium enhancement, balanced steady-state free precession cine sequence, black blood fat-suppressed T2-weighted. ASSESSMENT: LV function, myocardial strain, and infarct characteristics (infarct size, microvascular obstruction, and intramyocardial hemorrhage) were compared among the three groups by one-way analysis of variance (ANOVA) or Wilcoxon rank sum test. Intraobserver and interobserver reproducibility of LV myocardial strain was evaluated. STATISTICAL TESTS: ANOVA or Wilcoxon rank sum test, Pearson chi-square or Fisher's exact test, Spearman's correlation analyses and multivariable linear regression analysis. A two-tailed P value <0.05 was considered statistically significant. RESULTS: Infarct characteristics were similar among the three groups (P = 0.934, P = 0.097, P = 0.533, respectively). Patients with HbA1c ≥ 6.5% had decreased LV myocardial strain compared with HbA1c 5.7%-6.4%, as evidenced by global radial (GRS), global circumferential (GCS), and global longitudinal (GLS) strain. However, no significant differences in myocardial strain were observed between patients with HbA1c 5.7%-6.4% and HbA1c < 5.7% (P = 0.716; P = 0.294; P = 0.883, respectively). After adjustment for confounders, HbA1c as a continuous variable (beta coefficient [ß] = -0.676; ß = 0.172; ß = 0.205, respectively) and HbA1c ≥ 6.5% (ß = -3.682; ß = 0.552; ß = 0.681, respectively) were both independently associated with decreased GRS, GCS, and GLS. DATA CONCLUSION: Patients with uncontrolled blood glucose (categorized in group HbA1c ≥ 6.5%) had worse myocardial strain. The level of HbA1c appeared to be independently associated with decreased myocardial strain in STEMI patients. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , ST Elevation Myocardial Infarction/diagnostic imaging , Contrast Media , Treatment Outcome , Prospective Studies , Reproducibility of Results , Glycated Hemoglobin , Magnetic Resonance Imaging, Cine , Gadolinium , Magnetic Resonance Imaging , Ventricular Function, Left , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...