Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36837999

ABSTRACT

Laser diode pumped solid-state lasers (DPSSLs) have been widely used in many fields, and their thermal effects have attracted more and more attention. The laser diode (LD) side-pumped amplifier, as a key component of DPSSLs, is necessary for effective heat dissipation. In this paper, instead of the common thermal analysis based only on a crystal rod model, a fluid-structure interaction model including a glass tube, cooling channel, coolant and crystal rod is established in numerical simulation using ANSYS FLUENT for the configuration of an LD array side-pumped laser amplifier. The relationships between cooling layer thickness, coolant velocity and maximum temperature, maximum equivalent stress, inlet pressure and the convective heat transfer coefficient are analyzed. The results show that the maximum temperature (or maximum equivalent stress) decreases with the increase in the coolant velocity; at low velocity, a larger cooling layer thickness with more coolant is not conductive enough for improved heat dissipation of the crystal rod; at high velocity, when the cooling layer thickness is above or below 1.5 mm, the influence of the cooling layer thickness on the maximum temperature can be ignored; and the effect of the cooling layer thickness on the maximum equivalent stress at high velocity is not very significant. The comprehensive influence of various factors should be fully considered in the design process, and this study provides an important reference for the design and optimization of a laser amplifier and DPSSL system.

2.
Opt Lett ; 46(20): 5244-5247, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34653163

ABSTRACT

Environmental factors include sample temperature, ambient gas composition, and pressure, which have a significant impact on the accuracy and stability of the analysis results of laser-induced breakdown spectroscopy (LIBS). In this study, a method for simultaneously correcting the influence of several environmental factors is proposed. When the calibration and application environment are different, only one sample is needed to be measured in the application environment to correct the influence of environmental factors, so that the calibration model can obtain good analytical accuracy in this environment. When using one to four samples to correct the influence of environmental factors, the application of the calibration models constructed under solid-state conditions at atmosphere pressure to analyze seven elements in molten alloys in vacuum demonstrated the average root mean square error of prediction (RMSEP) of 0.57%, 0.51%, 0.41%, and 0.30% respectively. The accuracy of using only one sample to correct the influence of environmental factors was much higher than using two samples to establish calibration models in the application environment. This proved the effectiveness of the developed method for reducing the difficulty and cost of calibration in the metallurgical processes.

3.
J Vis Exp ; (148)2019 06 10.
Article in English | MEDLINE | ID: mdl-31233012

ABSTRACT

Vacuum induction melting is a popular method for refining high purity metal and alloys. Traditionally, standard process control in metallurgy involves several steps, include drawing samples, cooling, cutting, transport to the laboratory, and analysis. The whole analysis process requires more than 30 minutes, which hinders on-line process control. Laser-induced breakdown spectroscopy is an excellent on-line analysis method that can satisfy the requirements of vacuum induction melting because it is fast and noncontact and does not require sample preparation. The experimental facility uses a lamp-pumped Q-switched laser to ablate melted liquid steel with an output energy of 80 mJ, a frequency of 5 Hz, a FWHM pulse width of 20 ns, and a working wavelength of 1,064 nm. A multi-channel linear charge coupled device (CCD) spectrometer is used to measure the emission spectrum in real time, with a spectral range from 190 to 600 nm and a resolution of 0.06 nm at a wavelength of 200 nm. The protocol includes several steps: standard alloy sample preparation and an ingredient test, smelting of standard samples and determination of the laser breakdown spectrum, and construction of the elements concentration quantitative analysis curve of each element. To realize the concentration analysis of unknown samples, the spectrum of a sample also needs to be measured and disposed with the same process. The composition of all main elements in the melted alloy can be quantitatively analyzed with an internal standard method. The calibration curve shows that the limit of detection of most metal elements ranges from 20-250 ppm. The concentration of elements, such as Ti, Mo, Nb, V, and Cu, can be lower than 100 ppm, and the concentrations of Cr, Al, Co, Fe, Mn, C, and Si range from 100-200 ppm. The R2 of some calibration curves can exceed 0.94.


Subject(s)
Laser Therapy/methods , Spectrum Analysis/methods , Vacuum , Evaluation Studies as Topic
4.
Sensors (Basel) ; 18(10)2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30275437

ABSTRACT

Multi-platooning is an important management strategy for autonomous driving technology. The backbone vehicles in a multi-platoon adopt the IEEE 802.11 distributed coordination function (DCF) mechanism to transmit vehicles' kinematics information through inter-platoon communications, and then forward the information to the member vehicles through intra-platoon communications. In this case, each vehicle in a multi-platoon can acquire the kinematics information of other vehicles. The parameters of DCF, the hidden terminal problem and the number of neighbors may incur a long and unbalanced one-hop delay of inter-platoon communications, which would further prolong end-to-end delay of inter-platoon communications. In this case, some vehicles within a multi-platoon cannot acquire the emergency changes of other vehicles' kinematics within a limited time duration and take prompt action accordingly to keep a multi-platoon formation. Unlike other related works, this paper proposes a swarming approach to optimize the one-hop delay of inter-platoon communications in a multi-platoon scenario. Specifically, the minimum contention window size of each backbone vehicle is adjusted to enable the one-hop delay of each backbone vehicle to get close to the minimum average one-hop delay. The simulation results indicate that, the one-hop delay of the proposed approach is reduced by 12% as compared to the DCF mechanism with the IEEE standard contention window size. Moreover, the end-to-end delay, one-hop throughput, end-to-end throughput and transmission probability have been significantly improved.

SELECTION OF CITATIONS
SEARCH DETAIL
...