Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 47(4): e2300811, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403440

ABSTRACT

In this work, surface molecularly imprinted polymers based on magnetic multi-walled carbon nanotubes were prepared for the specific recognition and adsorption of resveratrol. The functionalization of magnetic multi-walled carbon nanotubes and the synthesis process of surface molecularly imprinted polymers were optimized. Characterizations were performed to demonstrate the successful synthesis of the imprinted materials. The imprinted materials showed satisfactory adsorption capacity of resveratrol (45.73 ± 1.72 mg/g) and excellent selectivity (imprinting factor 2.89 ± 0.15). In addition, the imprinted materials were used as adsorbents in molecularly imprinted solid-phase extraction for the purification of resveratrol from crude extracts of some food and medicinal resources, achieving recoveries of 93.69%-95.53% with high purities of 88.37%-92.33%. Moreover, the purified products exhibited extremely strong free radical scavenging activity compared with crude extracts. Overall, this work provided a promising approach for the highly selective purification of resveratrol from natural resources, which would contribute to the application of this valuable compound in the food/nutraceutical fields.


Subject(s)
Fallopia japonica , Molecular Imprinting , Nanotubes, Carbon , Vitis , Resveratrol , Molecularly Imprinted Polymers , Arachis , Polymers , Adsorption , Complex Mixtures , Magnetic Phenomena , Solid Phase Extraction
2.
Phytomedicine ; 125: 155295, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277945

ABSTRACT

BACKGROUND: Geniposidic acid (GPA) alleviates oxidative stress and inflammation in mice However, whether it can effectively regulate lipid accumulation and prevent hyperlipidemia requires further investigation. PURPOSE: This study combined the untargeted metabolomics of cells and a Caenorhabditis elegans model to evaluate the anti-hyperlipidemic potential of GPA by modulating oxidative stress and regulating lipid metabolism. A golden hamster model of hyperlipidemia was used to further validate the lipid-lowering effect and mechanism of action of GPA. METHODS: Chemical staining, immunofluorescence, and flow cytometry were performed to examine the effects of GPA on lipid accumulation and oxidative stress. Untargeted metabolomic analysis of cells and C. elegans was performed using ultra-performance liquid chromatography coupled with quadrupole electrostatic field Orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap MS) to identify biomarkers altered by GPA action, analyze the affected metabolic pathways, and validate the mechanisms by which GPA regulates lipid metabolism and oxidative stress. A golden hamster model of hyperlipidemia was established to test the lipid-lowering effects of GPA. Body weight, biochemical markers, rate-limiting enzymes, and key proteins were assessed. Hematoxylin and eosin (H&E) and Oil Red O staining were performed. RESULTS: Phenotypic data showed that GPA decreased free fatty acid (FFA)-induced lipid buildup and high reactive oxygen species (ROS) levels, reversed the decrease in mitochondrial membrane potential (MMP), and increased the cellular reduced glutathione/oxidized glutathione disulfide (GSH/GSSG) ratio. GPA also reduces high glucose-induced lipid build-up and ROS production in C. elegans. Metabolomic analysis showed that GPA affected purine, lipid, and amino acid metabolism. Moreover, GPA inhibited xanthine oxidase (XOD), glutamate dehydrogenase (GLDH), fatty acid synthase (FAS), phosphorylation of P38 MAPK, and upregulated the expression of SIRT3 and CPT1A protein production to control lipid metabolism and produce antioxidant benefits in cells and golden hamsters. CONCLUSION: Current evidence suggests that GPA can effectively regulate lipid metabolism and the oxidative stress response, and has the potential to prevent hyperlipidemia. This study also provided an effective method for evaluating the mechanism of action of GPA.


Subject(s)
Caenorhabditis elegans , Hyperlipidemias , Iridoid Glucosides , Cricetinae , Animals , Mice , Humans , Caenorhabditis elegans/metabolism , Hep G2 Cells , Reactive Oxygen Species/metabolism , Mesocricetus , Metabolomics , Hyperlipidemias/drug therapy , Lipids , Lipid Metabolism
3.
RSC Adv ; 13(42): 29438-29449, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37818259

ABSTRACT

Lingonberry are underutilised due to the lack of evaluating active compounds in different parts. In this study, the phytochemical profiles, antioxidant and antiproliferative activities of lingonberry's fruits, leaves and stems from different regions of China were compared. Ninety-five bioactive compounds were rapidly identified using a molecular network based on UPLC-Q-Exactive Orbitrap mass spectrometry. The UPLC-QqQ-MS/MS method combined with principal component analysis (PCA) quantified 18 bioactive components in 6 classes. The highest content of arbutin (15 mg/100 g DW) was found in leaves of Huzhong (P6). Ursolic acid and cyanidin-3-O-galactoside were highest in fruits of Tahe (P4) (4.5 mg/100 g DW and 3.2 mg/100 g DW, respectively). Antioxidant activities determined by DPPH, ABTS+ and FRAP methods were significantly correlated with total phenolic content (TPC), total flavonoid content (TFC) and total anthocyanin content (TAC). The results indicate that the strongest antioxidant activity and antiproliferative efficacy are observed in the fruits of Tahe (P4) and leaves of Huzhong (P6), respectively. Our results provide valuable insights into lingonberry's comprehensive development and utilization.

4.
Food Chem ; 426: 136630, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37352710

ABSTRACT

Pancreatic lipase inhibitors can reduce blood lipids by inactivating the catalytic activity of human pancreatic lipase, a key enzyme involved in triglyceride hydrolysis, which helps control some dyslipidemic diseases. The ability of Eucommia ulmoides tea to improve fat-related diseases is closely related to the natural inhibitory components of pancreatic lipase contained in the tea. In this study, fifteen pancreatic lipase inhibitors were screened and identified from Eucommia ulmoides tea by affinity-ultrafiltration combined UPLC-Q-Exactive Orbitrap/MS. Four representative components of geniposidic acid, quercetin-3-O-sambuboside, isochlorogenic acid A, and quercetin with high binding degrees were further verified by nanoscale differential scanning fluorimetry (nanoDSF) and enzyme inhibitory assays. The results of flow cytometry showed that they could significantly reduce the activity of pancreatic lipase in AR42J cells induced by palmitic acid in a concentration-dependent manner. Our findings suggest that Eucommia ulmoides tea may be a promising resource for pancreatic lipase inhibitors of natural origin.


Subject(s)
Eucommiaceae , Humans , Quercetin , Ultrafiltration , Lipase , Tea
5.
J Agric Food Chem ; 70(51): 16435-16445, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36512746

ABSTRACT

The action of allelopathy need that allelochemicals exist in the soil and reach a certain concentration. Also, the detection of allelochemicals in the soil is one of the most important research topics in the process of exploring allelopathy. To solve the problem of the simultaneous detection of allelochemicals with low concentrations and different polarities, a novel strategy for the quick detection of the allelochemicals in Taxus soil by microdialysis combined with UPLC-MS/MS on the basis of in situ detection without destroying the original structure of soil was developed for the first time in the work. The dialysis conditions were optimized by the Box-Behnken design (BBD): 70% methanol, 3 µL/min flow rate, and 3 cm long membrane tube. A reliable UPLC-MS/MS program was systematically optimized for the simultaneous detection of nine allelochemicals with different polarities. The results proved the differences in the contents and distributions of nine allelochemicals in three different Taxus soils.


Subject(s)
Tandem Mass Spectrometry , Taxus , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid , Chromatography, Liquid , Pheromones/chemistry , Soil , Microdialysis
6.
Sci Total Environ ; 581-582: 657-665, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28062103

ABSTRACT

Soil aggregation, an ecosystem function correlated with the concentration of glomalin-related soil protein (GRSP), is highly disturbed in saline soil. However, few studies have focused on differences in amount, composition, and ion binding capacity of GRSP in typical sodic-saline soils. In this study, a field study was performed in Songnen Plain. Combined indicators of soil salinity (Q value) were significant negatively correlated with GRSP concentration by Principal Component Analysis. Multiple linear regression models showed that soil salinity might account for 46%, 25% and 44% variation in total GRSP (T-GRSP), easily-extractable GRSP (EE-GRSP) and difficultly-extractable GRSP (DE-GRSP), respectively. Soil bulk density had most important impact on GRSP concentration, followed by the pH, soil EC had the weak influence. Comparative analysis was carried out between low-salinity and high-salinity soil. Purified T-GRSP of high-saline soil contained higher N content (13.13%), lower C content (43.41%) and lower functional groups relative content (e.g. CO and SiOSi). Purified T-GRSP of high-salinity soil had a greater binding capacity with calcium and phosphorus, the binding capacity could compensate the GRSP loss about 29.8% and 14.1%, respectively. Our findings suggested that sodic salinization of the soil led to a decrease in GRSP concentration and a change in the component percentages. This change in composition might be related to adaptation of fungi-plant systems to varied environments. The calcium and phosphorus binding capacity had a positive dependent of soil salinization, which was possible to develop ecological management or recovery technology in the future.


Subject(s)
Fungal Proteins/chemistry , Glycoproteins/chemistry , Salinity , Soil Microbiology , Soil/chemistry , China , Ecosystem
7.
Ecol Evol ; 4(14): 2884-900, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25165526

ABSTRACT

Climate change affects both habitat suitability and the genetic diversity of wild plants. Therefore, predicting and establishing the most effective and coherent conservation areas is essential for the conservation of genetic diversity in response to climate change. This is because genetic variance is a product not only of habitat suitability in conservation areas but also of efficient protection and management. Phellodendron amurense Rupr. is a tree species (family Rutaceae) that is endangered due to excessive and illegal harvesting for use in Chinese medicine. Here, we test a general computational method for the prediction of priority conservation areas (PCAs) by measuring the genetic diversity of P. amurense across the entirety of northeast China using a single strand repeat analysis of twenty microsatellite markers. Using computational modeling, we evaluated the geographical distribution of the species, both now and in different future climate change scenarios. Different populations were analyzed according to genetic diversity, and PCAs were identified using a spatial conservation prioritization framework. These conservation areas were optimized to account for the geographical distribution of P. amurense both now and in the future, to effectively promote gene flow, and to have a long period of validity. In situ and ex situ conservation, strategies for vulnerable populations were proposed. Three populations with low genetic diversity are predicted to be negatively affected by climate change, making conservation of genetic diversity challenging due to decreasing habitat suitability. Habitat suitability was important for the assessment of genetic variability in existing nature reserves, which were found to be much smaller than the proposed PCAs. Finally, a simple set of conservation measures was established through modeling. This combined molecular and computational ecology approach provides a framework for planning the protection of species endangered by climate change.

SELECTION OF CITATIONS
SEARCH DETAIL
...