Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 6556, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095386

ABSTRACT

The migratory insertion of metal-hydride into alkene has allowed regioselective access to organometallics, readily participating in subsequent functionalization as one conventional pathway of hydroalkylation, whereas analogous process with feedstock alkyne is drastically less explored. Among few examples, the regioselectivity of metal-hydride insertion is mostly governed by electronic bias of alkynes. To alter the regioselectivity and drastically expand the intermediate pools that we can access, one aspirational design is through alternative nickel-alkyl insertion, providing opposite regioselectivity induced by steric demand. Leveraging in situ formed nickel-alkyl species, we herein report the regio- and enantioselective hydroalkylation of alkynes with broad functional group tolerance, excellent regio- and enantioselectivity, enabling efficient route to diverse valuable chiral allylic amines motifs. Preliminary mechanistic studies indicate the aminoalkyl radical species can participate in metal-capture and lead to formation of nickel-alkyl, of which the migratory insertion is key to reverse regioselectivity observed in metal-hydride insertion.

2.
J Mater Chem B ; 12(34): 8465-8476, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39109448

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) pneumonia can have serious physiological consequences, particularly when P. aeruginosa biofilms are formed. Although inhaled therapy is preferred, inhaled drugs tend to get trapped by pulmonary mucus, which hinders efficient antibiotic permeability through mucus and biofilms. In this study, we prepare poly[2-(pentamethyleneimino)ethyl methacrylate]-block-poly[2-(N-oxide-pentamethyleneimino)ethyl methacrylate] (PPEMA-b-PPOEMA) micelles loaded with azithromycin (AZM) using reversible addition-fragmentation chain transfer (RAFT) polymerization to achieve effective treatment of P. aeruginosa pneumonia. The zwitterionic structure on the surface of the micelle facilitates the successful traversal of the mucus and optimal concentration within the biofilm. Furthermore, the protonation of piperidine in the polymer enables the micelles to exhibit a positive charge in the acidic environment of a bacterial infection, enhancing AZM's interaction with the bacterium. Both in vivo and in vitro experiments demonstrate that this transmucosal zwitterionic polymer, in combination with a charge reversal strategy, effectively promotes the enrichment of micelles at the site of bacterial infection, thereby increasing the number of antibiotics reaching the bacterial interior and demonstrating remarkable antibacterial synergy. Overall, this work offers a promising approach for trans-airway drug delivery in the treatment of pneumonia.


Subject(s)
Anti-Bacterial Agents , Micelles , Pseudomonas aeruginosa , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Pseudomonas aeruginosa/drug effects , Animals , Mucins/chemistry , Mucins/metabolism , Mice , Administration, Inhalation , Azithromycin/chemistry , Azithromycin/pharmacology , Azithromycin/administration & dosage , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Biofilms/drug effects , Drug Delivery Systems , Pneumonia/drug therapy , Chronic Disease , Drug Carriers/chemistry
3.
Acta Biomater ; 184: 352-367, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909721

ABSTRACT

Bacterial pneumonia is a common disease with significant health risks. However, the overuse antibiotics in clinics face challenges such as inadequate targeting and limited drug utilization, leading to drug resistance and gut dysbiosis. Herein, a dual-responsive lung inflammatory tissue targeted nanoparticle (LITTN), designed for targeting lung tissue and bacteria, is screened from a series of prepared nanoparticles consisting of permanent cationic lipids, acid-responsive lipids, and reactive oxygen species-responsive and phenylboronic acid-modified lipids with different surface properties. Such nanoparticle is further verified to enhance the adsorption of vitronectin in serum. Additionally, the optimized nanoparticle exhibits more positive charge and coordination of boric acid with cis-diol in the infected microenvironment, facilitating electrostatic interactions with bacteria and biofilm penetration. Importantly, the antibacterial efficiency of dual-responsive rifampicin-loaded LITTN (Rif@LITTN) against methicillin-resistant staphylococcus aureus is 10 times higher than that of free rifampicin. In a mouse model of bacterial pneumonia, the intravenous administration of Rif@LITTN could precisely target the lungs, localize in the lung infection microenvironment, and trigger the responsive release of rifampicin, thereby effectively alleviating lung inflammation and reducing damage. Notably, the targeted delivery of rifampicin helps protect against antibiotic-induced changes in the gut microbiota. This study establishes a new strategy for precise delivery to the lung-infected microenvironment, promoting treatment efficacy while minimizing the impact on gut microbiota. STATEMENT OF SIGNIFICANCE: Intravenous antibiotics play a critical role in clinical care, particularly for severe bacterial pneumonia. However, the inability of antibiotics to reach target tissues causes serious side effects, including liver and kidney damage and intestinal dysbiosis. Therefore, achieving precise delivery of antibiotics is of great significance. In this study, we developed a novel lung inflammatory tissue-targeted nanoparticle that could target lung tissue after intravenous administration and then target the inflammatory microenvironment to trigger dual-responsive antibiotics release to synergistically treat pneumonia while maintaining the balance of gut microbiota and reducing the adverse effects of antibiotics. This study provides new ideas for targeted drug delivery and reference for clinical treatment of pneumonia.


Subject(s)
Anti-Bacterial Agents , Dysbiosis , Gastrointestinal Microbiome , Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Dysbiosis/drug therapy , Mice , Gastrointestinal Microbiome/drug effects , Nanoparticles/chemistry , Lung/pathology , Lung/drug effects , Lung/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Rifampin/pharmacology , Rifampin/pharmacokinetics , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/pathology , Drug Delivery Systems
4.
Adv Mater ; 36(30): e2404199, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734974

ABSTRACT

External stimuli triggering chemical reactions in cancer cells to generate highly reactive chemical species are very appealing for cancer therapy, in which external irradiation activating sensitizers to transfer energy or electrons to surrounding oxygen or other molecules is critical for generating cytotoxic reactive species. However, poor light penetration into tissue, low activity of sensitizers, and reliance on oxygen supply restrict the generation of cytotoxic chemical species in hypoxic tumors, which lowers the therapeutic efficacy. Here, this work presents galvanic cell nanomaterials that can directly release highly reactive electrons in tumors without external irradiation or photosensitizers. The released reactive electrons directly react with surrounding biomolecules such as proteins and DNA within tumors to destroy them or react with other surrounding (bio)molecules to yield cytotoxic chemical species to eliminate tumors independent of oxygen. Administering these nanogalvanic cells to mice results in almost complete remission of subcutaneous solid tumors and deep metastatic tumors. The results demonstrate that this strategy can further arouse an immune response even in a hypoxic environment. This method offers a promising approach to effectively eliminate tumors, similar to photodynamic therapy, but does not require oxygen or irradiation to activate photosensitizers.


Subject(s)
Electrons , Neoplasms , Animals , Mice , Neoplasms/pathology , Neoplasms/therapy , Neoplasms/drug therapy , Cell Line, Tumor , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photochemotherapy/methods , Nanostructures/chemistry
5.
J Mater Chem B ; 12(23): 5628-5644, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38747238

ABSTRACT

Hydrogels with strong adhesion to wet tissues are considered promising for wound dressings. However, the clinical application of adhesive hydrogel dressing remains a challenge due to the issues of secondary damage during dressing changes. Herein, we fabricated an adhesion-switchable hydrogel formed with poly(acrylamide)-co-poly(N-isopropyl acrylamide), quaternary ammonium chitosan and tannic acid. This hydrogel forms instant and robust adhesion to the skin at body temperature. However, as the temperature rises above the lower critical solution temperature (LCST), the hydrogel loses its adhesion towards the wound area due to the temperature-dependent volume phase transition of the copolymer, occurring around 45 °C. Consequently, the designed hydrogel can be easily detached from adhered tissues upon demand, providing a facile and effective method for painless dressing changes without secondary damage. This hydrogel holds great promise for long-term application in wound dressings.


Subject(s)
Bandages , Chitosan , Hydrogels , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Chitosan/chemistry , Acrylic Resins/chemistry , Tannins/chemistry , Tannins/pharmacology , Mice , Wound Healing/drug effects , Temperature
6.
Nanoscale Adv ; 5(12): 3336-3347, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37325521

ABSTRACT

Disulfiram (DSF) has been used as a hangover drug for more than seven decades and was found to have potential in cancer treatment, especially mediated by copper. However, the uncoordinated delivery of disulfiram with copper and the instability of disulfiram limit its further applications. Herein, we synthesize a DSF prodrug using a simple strategy that could be activated in a specific tumor microenvironment. Poly amino acids are used as a platform to bind the DSF prodrug through the B-N interaction and encapsulate CuO2 nanoparticles (NPs), obtaining a functional nanoplatform Cu@P-B. In the acidic tumor microenvironment, the loaded CuO2 NPs will produce Cu2+ and cause oxidative stress in cells. At the same time, the increased reactive oxygen species (ROS) will accelerate the release and activation of the DSF prodrug and further chelate the released Cu2+ to produce the noxious copper diethyldithiocarbamate complex, which causes cell apoptosis effectively. Cytotoxicity tests show that the DSF prodrug could effectively kill cancer cells with only a small amount of Cu2+ (0.18 µg mL-1), inhibiting the migration and invasion of tumor cells. In vitro and in vivo experiments have demonstrated that this functional nanoplatform could kill tumor cells effectively with limited toxic side effects, showing a new perspective in DSF prodrug design and cancer treatment.

7.
J Mater Chem B ; 11(25): 5817-5829, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37278619

ABSTRACT

Antibiotic tolerance is implicated in difficult-to-treat infections and the development and spread of antibiotic resistance. The high storage capacities and excellent biocompatibilities of UiO-66-based metal-organic frameworks (MOFs) have made them emerging candidates as drug-delivery vectors. In view of hydrogen sulfide (H2S) having been associated with the development of intrinsic resistance to antibacterial agents, we designed a strategy to potentiate existing antibiotics by eliminating bacterial endogenous H2S. We efficiently fabricated an antibiotic enhancer Gm@UiO-66-MA to remove bacterial H2S and sensitize an antibacterial by modifying UiO-66-NH2 with maleic anhydride (MA) and then loading it with gentamicin (Gm). UiO-66-MA achieved the removal of bacterial endogenous H2S and the destruction of bacterial biofilm by selectively undergoing Michael addition with H2S. Moreover, Gm@UiO-66-MA further enhanced the susceptibility of tolerant E. coli to Gm after reducing bacterial intracellular H2S levels. An in vivo skin wound healing experiment confirmed that Gm@UiO-66-MA could greatly reduce the risk of bacterial reinfection and accelerate wound healing. Overall, Gm@UiO-66-MA offers a promising antibiotic sensitizer for minimizing bacterial resistance and a therapeutic strategy for tolerant bacteria-related refractory infections.


Subject(s)
Metal-Organic Frameworks , Organometallic Compounds , Metal-Organic Frameworks/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology
8.
Front Cardiovasc Med ; 10: 1090397, 2023.
Article in English | MEDLINE | ID: mdl-37332594

ABSTRACT

Purpose: To explore the potential of perivascular fat attenuation index (FAI) and coronary computed tomography angiography (CCTA) derived fractional flow reserve (CT-FFR) in the identification of culprit lesion leading to subsequent acute coronary syndrome (ACS). Methods: Thirty patients with documented ACS event who underwent invasive coronary angiography (ICA) from February 2019 to February 2021 and had received CCTA in the previous 6 months were collected retrospectively. 40 patients with stable angina pectoris (SAP) were matched as control group according to sex, age and risk factors. The study population has a mean age of 59.3 ± 12.3 years, with a male prevalence of 81.4%. The plaque characteristics, perivascular fat attenuation index (FAI), and coronary computed tomography angiography-derived fractional flow reserve (CT-FFR) of 32 culprit lesions and 30 non-culprit lesions in ACS patients and 40 highest-grade stenosis lesions in SAP patients were statistically analyzed. Results: FAI around culprit lesions was increased significantly (-72.4 ± 3.2 HU vs. -79.0 ± 7.7 HU, vs. -80.4 ± 7.0HU, all p < 0.001) and CT-FFR was decreased for culprit lesions of ACS patients [0.7(0.1) vs. 0.8(0.1), vs.0.8(0.1), p < 0.001] compared to other lesions. According to multivariate analysis, diameter stenosis (DS), FAI, and CT-FFR were significant predictors for identification of the culprit lesion. The integration model of DS, FAI, and CT-FFR showed the significantly highest area under the curve (AUC) of 0.917, compared with other single predictors (all p < 0.05). Conclusions: This study proposes a novel integrated prediction model of DS, FAI, and CT-FFR that enhances the diagnostic accuracy of traditional CCTA for identifying culprit lesions that trigger ACS. Furthermore, this model also provides improved risk stratification for patients and offers valuable insights for predicting future cardiovascular events.

9.
Adv Healthc Mater ; 12(21): e2203252, 2023 08.
Article in English | MEDLINE | ID: mdl-37154112

ABSTRACT

Gene therapy holds great promise as an effective treatment for many diseases of genetic origin. Gene therapy works by employing cationic polymers, liposomes, and nanoparticles to condense DNA into polyplexes via electronic interactions. Then, a therapeutic gene is introduced into target cells, thereby restoring or changing cellular function. However, gene transfection efficiency remains low in vivo due to high protein binding, poor targeting ability, and substantial endosomal entrapment. Artificial sheaths containing PEG, anions, or zwitterions can be introduced onto the surface of gene carriers to prevent interaction with proteins; however, they reduce the cellular uptake efficacy, endosomal escape, targeting ability, thereby, lowering gene transfection. Here, it is reported that linking dipicolylamine-zinc (DPA-Zn) ions onto polyplex nanoparticles can produce a strong hydration water layer around the polyplex, mimicking the function of PEGylation to reduce protein binding while targeting cancer cells, augmenting cellular uptake and endosomal escape. The polyplexes with a strong hydration water layer on the surface can achieve a high gene transfection even in a 50% serum environment. This strategy provides a new solution for preventing protein adsorption while improving cellular uptake and endosomal escape.


Subject(s)
Neoplasms , Zinc , Protein Binding , Polymers/metabolism , DNA/metabolism , Cations , Transfection , Gene Transfer Techniques , Polyethylene Glycols/metabolism , Neoplasms/therapy
10.
Angew Chem Int Ed Engl ; 62(15): e202216685, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36786232

ABSTRACT

Multiblock copolymers are envisioned as promising materials with enhanced properties and functionality compared with their diblock/triblock counterparts. However, the current approaches can construct multiblock copolymers with a limited number of blocks but tedious procedures. Here, we report a thioester-relayed in-chain cascade copolymerization strategy for the easy preparation of multiblock copolymers with on-demand blocks, in which thioester groups with on-demand numbers are built in the polymer backbone by controlled/living polymerizations. These thioester groups further serve as the in-chain initiating centers to trigger the acyl group transfer ring-opening polymerization of episulfides independently and concurrently to extend the polymer backbone into multiblock structures. The compositions, number of blocks, and block degree of polymerization can be easily regulated. This strategy can offer easy access to a library of multiblock copolymers with ≈100 blocks in only 2 to 4 steps.

11.
Biomater Sci ; 11(1): 288-297, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36444966

ABSTRACT

Bacterial proliferation and the disordered extracellular matrix (ECM) at the wound site are the major reasons for delayed healing and abnormal scarring. The development of new multifunctional dressing materials that can effectively prevent scar formation without delaying wound healing remains a challenge. In this study, we construct a verteporfin-loaded biodegradable hydrogel (VP-gel) using hyaluronic acid and thiol-terminated 4-arm polyethylene glycol (PEG). The injectable VP-gel sustainably releases small doses of verteporfin in the wound microenvironment that generates reactive oxygen species (ROS) under red light irradiation to kill bacteria efficiently. Importantly, the sustained release of VP could also regulate TGF-ß family-induced cellular responses and the downstream signaling molecule Smad2 in fibroblasts to reduce myofibroblast differentiation, promoting ECM reconstruction and scarless wound healing. Immunohistochemical examination of wound healing and histomorphology in a mouse full-thickness wound model demonstrates excellent acceleration effects of VP-gel for infected wound healing. Therefore, VP-gel with anti-scarring and antibacterial activity, as well as enhanced infection wound healing ability shows great potential in the clinical treatment of scar healing for infected wounds.


Subject(s)
Hydrogels , Wound Healing , Mice , Animals , Hydrogels/chemistry , Verteporfin/pharmacology , Cicatrix/drug therapy , Cicatrix/prevention & control , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
12.
J Ambient Intell Humaniz Comput ; : 1-14, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35646192

ABSTRACT

This paper proposes an optimal structured deep convolutional neural network (DCNN) based on the marine predator algorithm (MPA) to construct a novel automatic diagnosis platform that may help radiologists identify COVID-19 and non-COVID-19 patients based on CT scan categorization and analysis. The goal is met with the help of three modifications based on the regular MPA. First, a novel encoding scheme based on Internet Protocol (IP) addresses is proposed, followed by introducing an Enfeebled layer to build a variable-length DCNN. Finally, the learning process divides big datasets into smaller chunks that are randomly evaluated. The proposed model is compared to the COVID-CT and SARS-CoV-2 datasets to undertake a complete evaluation. Following that, the performance of the developed model (DCNN-IPMPA) is compared to that of a typical DCNN and seven variable-length models using five well-known comparison metrics, as well as the receiver operating characteristic and precision-recall curves. The results show that the DCNN-IPMPA outperforms other benchmarks, with a final accuracy of 97.21% on the SARS-CoV-2 dataset and 97.94% on the COVID-CT dataset. Also, timing analysis indicates that the DCNN processing time is the best among all benchmarks as expected; however, DCNN-IPMPA represents a competitive result compared to the standard DCNN.

13.
Article in English | MEDLINE | ID: mdl-35670468

ABSTRACT

An ultrasound-triggered sonodynamic therapy has shown great promise for cancer therapy. However, its clinical applications are very limited because the traditional sonosensitizers tend to suffer from very poor efficiency combined with low retention in cancer cells and low tumor selectivity. Therefore, sonosensitizers with higher effectivity, higher tumor cell retention, and higher tumor cell specificity are highly required. Herein, we constructed a Ti2C(OH)X nanosheet, which was a poor sonosensitizer but had a long circulation in the blood system. However, it was very interesting to find that the tumor microenvironment could in situ turn Ti2C(OH)X nanosheet into a novel and excellent sonosensitizer with a nanofiber structure in tumors, exhibiting excellent ability to generate reactive oxygen species (ROS) under ultrasound. Moreover, the nanofiber structure made it very difficult to get out of cancer cells, highly enhancing the retention of the sonosensitizer in the tumor, thereby enabling it to effectively and selectively kill cancer cells in vivo. Our findings demonstrate that the strategy of the tumor microenvironment triggering the in situ synthesis of an effective sonosensitizer in tumor provided a promising means to simultaneously increase the efficiency, sonosensitizer retention in cancer cells, and cancer selectivity, thereby effectively killing cancer cells but causing little damage to healthy tissues via the sonodynamic therapy.

14.
Macromol Rapid Commun ; 43(17): e2200140, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35578395

ABSTRACT

Providing access to diverse polymer structures is highly desirable, which helps to explore new polymer materials. Poly(thioester sulfonamide)s, combining both the advantages of thioesters and amides, however, are rarely available in polymer chemistry. Here, the ring-opening copolymerization (ROCOP) of cyclic thioanhydride with N-sulfonyl aziridine using mild phosphazene base, resulting in well-defined poly(thioester sulfonamide)s with highly alternative structures, high yields, and controlled molecular weights, is reported. Additionally, benefiting from the mild catalytic process, this ROCOP can be combined with ROCOP of N-sulfonyl aziridines with cyclic anhydrides to produce novel block copolymers.


Subject(s)
Aziridines , Aziridines/chemistry , Polymerization , Polymers , Sulfonamides/chemistry
15.
J Mater Chem B ; 10(25): 4823-4831, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35266490

ABSTRACT

Bacterial biofilms, as a fortress to protect bacteria, enhance resistance to antibiotics because of their limited penetration, which has become a major threat to current anti-infective therapy. Antimicrobial polycations have received wide attention to kill planktonic bacteria because of their unique antimicrobial mechanism without drug resistance but it is still hard to kill the bacteria in the deep of the biofilm. Unlike linear polymers, the cyclic topology has been demonstrated with enhanced penetration in tissues, which is attributed to the lack of end groups, constrained conformation and a smaller hydrodynamic volume, opening a new sight of polycations in the antibacterial application against biofilms. Here, polycations with different topologies including linear and cyclic polycations were synthesized and their killing activity against planktonic and biofilm bacteria was studied. The experimental results showed the enhanced antibacterial activity of cyclic polycations for planktonic bacteria, which is presumably attributed to their smaller hydrodynamic volume, higher local density of positive charge and more interactions between cation units and the bacterial membrane than their linear analogues. Besides, cyclic polycations exhibit enhanced killing effect for biofilm bacteria and inhibition effect for biofilms with 5-7 times and 2-3 times enhancements than the linear polycations, respectively. Furthermore, an Escherichia coli infection model on mice was established and the therapeutic effects of cyclic and linear polycations were evaluated. Compared with the linear polycations, the cyclic polycations exhibited enhanced antibacterial activity with an ∼4 times increase, promoting the healing of the infected wounds. This work provides a new perspective in the development of antimicrobial polycations, which are promising therapeutic agents to kill planktonic and biofilm bacteria without drug resistance.


Subject(s)
Anti-Infective Agents , Plankton , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Biofilms , Mice , Polyelectrolytes
16.
J Mater Chem B ; 10(15): 2844-2852, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35293932

ABSTRACT

With the widespread use of antibiotics, the number of severe infections caused by unknown pathogens is increasing and novel antibacterial agents with high antibacterial efficiency and selective bacterial killing are urgently needed. In this work, we developed a new kind of functional material based on silver nanoparticles (AgNPs), whose surfaces were functionalized with phenylboronic acid (AgNPs-PBAn). The phenylboronic acid groups on the surface of AgNPs-PBAn could form covalent bonds with the cis-diol groups of lipopolysaccharide or teichoic acid on the bacterial surface, which highly promoted the interaction between AgNPs-PBAn and bacteria, resulting in a very strong enhancement of their antibacterial action via membrane disruption. The scanning electron microscopy images revealed that the accumulation of phenylboronic acid-functionalized AgNPs on the bacterial surface is much more than that of the nonfunctionalized AgNPs. Importantly, the antibacterial efficiency of the phenylboronic acid-functionalized AgNPs on a series of bacteria is 32 times higher than that of bare AgNPs. Moreover, AgNPs-PBAn showed a high selectivity toward bacteria with an IC50 (half maximal inhibitory concentration to mammalian cells) more than 160 times its MBC (minimum bactericidal concentration). In a model of an E. coli-infected wound in vivo, AgNPs-PBAn could effectively kill the bacteria with an accelerated wound healing rate. This study demonstrates that phenylboronic acid surface functionalization is an efficient way to drastically promote the antibacterial activity of AgNPs, improving the selectivity of silver-based nanoparticles against a variety of bacteria.


Subject(s)
Metal Nanoparticles , Silver , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Boronic Acids , Escherichia coli , Mammals , Metal Nanoparticles/chemistry , Silver/chemistry , Silver/pharmacology
17.
Mater Horiz ; 8(2): 597-605, 2021 02 01.
Article in English | MEDLINE | ID: mdl-34821276

ABSTRACT

In a tumor, the abnormal cancer cell proliferation results in an insufficient O2 supply, and meanwhile cancer cells consume O2 very fast. The imbalance between a low oxygen supply and overwhelming oxygen consumption results in a low oxygen concentration in solid tumors. Therefore, in order to relieve hypoxia in tumors, it is necessary to not only sustainably generate O2, but also inhibit mitochondrial respiration simultaneously. Here, we found that a single Ti2C(OH)2 nanomaterial not only can sustainably generate O2 but also simultaneously highly inhibits mitochondrial respiration via binding phosphorylation proteins onto the surface in cancer cells. Ce6 was linked onto Ti2C(OH)2, forming Ti2C(OH)2-Ce6. Ti2C(OH)2-Ce6 could highly relieve hypoxia in tumors via the combination of sustainable O2 generation and respiration inhibition, produce enough 1O2 to kill cancer cells via PDT, and also effectively convert the absorbed light energy into thermal energy to kill cancer cell via PTT, thereby highly enhancing the cancer therapy.


Subject(s)
Neoplasms , Photochemotherapy , Cell Line, Tumor , Neoplasms/therapy , Oxygen , Photosensitizing Agents/therapeutic use , Respiration
18.
Mater Horiz ; 8(2): 645, 2021 02 01.
Article in English | MEDLINE | ID: mdl-34821282

ABSTRACT

Correction for 'Single nanosheet can sustainably generate oxygen and inhibit respiration simultaneously in cancer cells' by Wei-Qiang Huang et al., Mater. Horiz., 2021, DOI: .

19.
Mater Horiz ; 8(7): 2018-2024, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34846478

ABSTRACT

In nature, the chemical energy and electrons stored in ATP and NADPH generated during irradiation can facilitate biochemical reactions under dark conditions. However, in artificial photoreaction systems, it is still very difficult to perform photoreactions under dark conditions due to the fact that the photogenerated charge pairs can recombine immediately upon ceasing the irradiation. Preventing the recombination of photogenerated charge pairs still constitutes a major challenge at present. Here, it is reported that functionalized carbon nitride nanomaterials having many heptazine rings with a positive charge distribution, which can tightly trap photogenerated electrons, efficiently prevent the recombination of photogenerated charges. These stored charges are exceedingly long-lived (up to months) and can drive photopolymerization without light irradiation, even after one month. The system introduced here demonstrates a new approach for storing light energy as long-lived radicals, enabling photoreactions under dark conditions.


Subject(s)
Electrons , Nanostructures , Nitriles
20.
ACS Appl Mater Interfaces ; 13(48): 56838-56849, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34816709

ABSTRACT

Antimicrobial resistance in Gram-negative bacteria has become one of the leading causes of morbidity and mortality and a serious worldwide public health concern due to the fact that Gram-negative bacteria have an additional outer membrane protecting them from an unwanted compound invading. It is still very difficult for antimicrobials to reach intracellular targets and very challenging to treat Gram-negative bacteria with the current strategies. Here, we found that (o-(bromomethyl)phenyl)boronic acid was incorporated into poly((2-N,N-diethyl)aminoethyl acrylate) (PDEA), forming a copolymer (poly(o-Bn-DEA)) having both phenylboronic acid (B) and ((2-N,N-diethyl)amino) (DEA) units. Poly(o-Bn-DEA) exhibits very strong intramolecular B-N coordination, which could highly promote the covalent binding of phenylboronic acid with lipopolysaccharide (LPS) on the outer membrane of E. coli and lodge poly(o-Bn-DEA) on the LPS layer on the surface of E. coli. Meanwhile, the strong electrostatic interaction between poly(o-Bn-DEA) and the negatively charged lipid preferred tugging the poly(o-Bn-DEA) into the lipid bilayer of E. coli. The combating interactions between covalent binding and electrostatic interaction form a tug-of-war action, which could trigger the lysis of the outer membrane, thereby killing Gram-negative E. coli effectively without detectable resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Biomimetic Materials/pharmacology , Escherichia coli/drug effects , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Binding Sites/drug effects , Biomimetic Materials/chemistry , Materials Testing , Microbial Sensitivity Tests , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL