Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(23): 16207-16217, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38769971

ABSTRACT

Dynamic hydrogels possessing injectable, degradable and self-healing abilities have attracted considerable attention in the biomedical field in recent years, but it is difficult to tune the mechanical properties and stability of conventional dynamic hydrogels. In this work, we synthesized ABA-triblock copolymers via RAFT polymerization, where the A block consisted of thermo-sensitive poly(N-isopropylacrylamide-co-diacetone acrylamide) and the B block was hydrophilic poly(acrylamide). Subsequently, dynamic hydrogels were obtained based on the acylhydrazone bonds between the triblock copolymers and adipic acid dihydrazide (ADH). The obtained hydrogels exhibited injectable and self-healable abilities. In response to the thermal-induced micellization of their temperature-responsive blocks, the mechanical strength of the hydrogels not only increased, but also they exhibited high stability even at pH 2.0. Moreover, the hydrogel in the stable state could be degraded by the fracture of its trithiocarbonate groups. In addition, the hydrogels exhibited good cytocompatibility and controlled release behavior for doxorubicin (DOX). Considering these attractive tunable properties, these dynamic hydrogels show various potential applications in the biomedical field, such as drug carriers and cell or tissue engineering scaffolds.

2.
Front Aging Neurosci ; 16: 1354455, 2024.
Article in English | MEDLINE | ID: mdl-38327498

ABSTRACT

Background: Freezing of gait (FOG) is a common and disabling phenomenon in patients with Parkinson's disease (PD), but effective treatment approach remains inconclusive. Dysfunctional emotional factors play a key role in FOG. Since primary motor cortex (M1) connects with prefrontal areas via the frontal longitudinal system, where are responsible for emotional regulation, we hypothesized M1 may be a potential neuromodulation target for FOG therapy. The purpose of this study is to explore whether high-frequency rTMS over bilateral M1 could relieve FOG and emotional dysregulation in patients with PD. Methods: This study is a single-center, randomized double-blind clinical trial. Forty-eight patients with PD and FOG from the Affiliated Hospital of Xuzhou Medical University were randomly assigned to receive 10 sessions of either active (N = 24) or sham (N = 24) 10 Hz rTMS over the bilateral M1. Patients were evaluated at baseline (T0), after the last session of treatment (T1) and 30 days after the last session (T2). The primary outcomes were Freezing of Gait Questionnaire (FOGQ) scores, with Timed Up and Go Test (TUG) time, Standing-Start 180° Turn (SS-180) time, SS-180 steps, United Parkinson Disease Rating Scales (UPDRS) III, Hamilton Depression scale (HAMD)-24 and Hamilton Anxiety scale (HAMA)-14 as secondary outcomes. Results: Two patients in each group dropped out at T2 and no serious adverse events were reported by any subject. Two-way repeated ANOVAs revealed significant group × time interactions in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14. Post-hoc analyses showed that compared to T0, the active group exhibited remarkable improvements in FOGQ, TUG, SS-180 turn time, SS-180 turning steps, UPDRS III, HAMD-24 and HAMA-14 at T1 and T2. No significant improvement was found in the sham group. The Spearman correlation analysis revealed a significantly positive association between the changes in HAMD-24 and HAMA-14 scores and FOGQ scores at T1. Conclusion: High-frequency rTMS over bilateral M1 can improve FOG and reduce depression and anxiety in patients with PD.

3.
Talanta ; 233: 122541, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215044

ABSTRACT

The relative humidity (RH) determination is crucial in many fields. Based on the phosphorescent properties of room-temperature phosphorescent (RTP) carbon dots, the RTP carbon dots as a probe are expected to be used to rapidly detect relative humidity. In this study, matrix-free room-temperature phosphorescent N-doped carbon dots (N-CDs) were successfully prepared from urea, succinic acid, and acrylamide using a hydrothermal method. The as-synthesized N-CDs had good biocompatibility and water solubility. The N-CDs emitted blue fluorescence and green phosphorescence. Moreover, the N-CD powder exhibited stable phosphorescence with a phosphorescence lifetime of 158 ms (afterglow time to the naked eye for ~7 s). Because H2O molecules affected the afterglow time, the as-prepared N-CD test paper for the first time could be applied as a probe to monitor RH, the afterglow time of the N-CD test paper is linearly related to the RH (y = -0.0729x+7.042, R2 = 0.998) and the RH detection range is 0%-85%. And the results were consistent with those obtained using a hygrometer. In addition, the N-CD solution could also be used as an encryption ink in the advanced information security field.


Subject(s)
Carbon , Fluorescence , Humidity , Temperature
4.
Small ; 17(12): e2007122, 2021 03.
Article in English | MEDLINE | ID: mdl-33586329

ABSTRACT

Membrane separation is recognized as one of the most effective strategies to treat the complicated wastewater system for economic development. However, serious membrane fouling has restricted its further application. Inspired by sphagnum, a 0D/2D heterojunction composite membrane is engineered by depositing graphitic carbon nitride nano/microspheres (CNMS) with plentiful wrinkles onto the polyacrylic acid functionalized carbon nanotubes (CNTs-PAA) membrane through hydrogen bond force. Through coupling unique structure and chemistry properties, the CNTs-PAA/CNMS heterojunction membrane presents superhydrophilicity and underwater superoleophobicity. Furthermore, thanks to the J-type aggregates during the solvothermal process, it is provided with a smaller bandgap (1.77 eV) than the traditional graphitic carbon nitride (g-C3 N4 ) sheets-based membranes (2.4-2.8 eV). This feature endows the CNTs-PAA/CNMS membrane with superior visible-light-driven self-cleaning ability, which can maintain its excellent emulsion separation (with a maximum flux of 5557 ± 331 L m-2 h-1 bar-1 and an efficiency of 98.5 ± 0.6%), photocatalytic degradation (with an efficiency of 99.7 ± 0.2%), and antibacterial (with an efficiency of ≈100%) ability even after cyclic experimental processes. The excellent self-cleaning performance of this all-in-one membrane represents its potential value for water purification.


Subject(s)
Nanotubes, Carbon , Sphagnopsida , Water Purification , Microspheres , Sunlight
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 250: 119231, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33277209

ABSTRACT

Hypochlorite ions (ClO-) are widely used in bleaching agents and disinfectants. However, high concentrations of chloride species are harmful to human health. Therefore, effective methods for the detection of ClO- ions are required. In this study, using 4-fluorophthalic acid and glycine, nitrogen-fluorine co-doped carbon nanodots (N,F-CDs) were synthesized by one-pot hydrothermal synthesis for use as a fluorescent probe for the fluorometric detection of ClO- in aqueous media, based on the inhibition of n â†’ π* transitions. The excitation and emission peak centers of the N,F-CDs are at 387 and 545 nm, respectively. The N,F-CDs show a fast quenching response (<1 min) for ClO- and can be used in a wide pH range (pH 4-13). Under optimal conditions, the fluorescence intensity decreased with increase in the ClO- concentration from 0 to 35 µM, and a low limit of detection (9.6 nM) was achieved. This probe possesses excellent selectivity and high sensitivity and was used to analyze standardized samples of piped water, achieving a satisfactory recovery. Thus, this nitrogen-fluorine co-doped nanodot probe is promising for the detection of pollutants.

6.
Anal Bioanal Chem ; 412(13): 3083-3090, 2020 May.
Article in English | MEDLINE | ID: mdl-32152652

ABSTRACT

2,4,6-Trinitrophenol (TNP) is widely used in our daily life; however, excessive use of TNP can lead to a large number of diseases. Therefore, it is necessary to find an effective method to detect TNP. Herein, the rapid fluorescence quenching by TNP was developed for the fluorometric determination of TNP in aqueous medium based on the internal filter effect. Nitrogen-sulfur-codoped carbon nanoparticles (N,S-CNPs), synthesized by a one-pot solvothermal method with the precursors of L-cysteine and citric acid, were applied for the determination of TNP as a fluorescent probe. The excitation peak center of N,S-CNPs and the emission peak center are 340 nm and 423 nm, respectively. The probe can be used in a variety of conditions to detect TNP due to its relatively stable properties. Meanwhile, it has a fast response time (< 1 min), wide linear response range (0.1-40 µM), and low detection limit (43.0 nM). This probe still has excellent selectivity and high sensitivity. The method was also used to detect standard water samples with a satisfactory recovery rate, and it will be used in the application of pollutants and clinical diseases. Graphical abstract.


Subject(s)
Carbon/chemistry , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Picrates/analysis , Limit of Detection , Microscopy, Electron, Transmission , Quantum Dots , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis/methods
7.
Polymers (Basel) ; 11(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614488

ABSTRACT

Acetylation and in situ polymerization are two typical chemical modifications that are used to improve the dimensional stability of bamboo. In this work, the combination of chemical modification of vinyl acetate (VA) acetylation and methyl methacrylate (MMA) in situ polymerization of bamboo was employed. Performances of the treated bamboo were evaluated in terms of dimensional stability, wettability, thermal stability, chemical structure, and dynamic mechanical properties. Results show that the performances (dimensional stability, thermal stability, and wettability) of bamboo that was prepared via the combined pretreatment of VA and MMA (VA/MMA-B) were better than those of raw bamboo, VA single-treated bamboo (VA-B), and MMA single-treated bamboo (MMA-B). According to scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses, VA and MMA were mainly grafted onto the surface of the cell wall or in the bamboo cell lumen. The antiswelling efficiency and contact angle of VA/MMA-B increased to maximum values of 40.71% and 107.1°, respectively. From thermogravimetric analysis (TG/DTG curves), the highest onset decomposition temperature (277 °C) was observed in VA/MMA-B. From DMA analysis, the storage modulus (E') of VA/MMA-B increased sharply from 15,057 Pa (untreated bamboo) to 17,909 Pa (single-treated bamboo), and the glass transition temperature was improved from 180 °C (raw bamboo) to 205 °C (single-treated bamboo).

SELECTION OF CITATIONS
SEARCH DETAIL
...