Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Front Vet Sci ; 11: 1405541, 2024.
Article in English | MEDLINE | ID: mdl-38919158

ABSTRACT

Mercury (Hg) contamination poses a global threat to the environment, given its elevated ecotoxicity. Herein, we employed the lepidopteran model insect, silkworm (Bombyx mori), to systematically investigate the toxic effects of Hg-stress across its growth and development, histomorphology, antioxidant enzyme activities, and transcriptome responses. High doses of Hg exposure induced evident poisoning symptoms, markedly impeding the growth of silkworm larvae and escalating mortality in a dose-dependent manner. Under Hg exposure, the histomorphology of both the midgut and fat body exhibited impairments. Carboxylesterase (CarE) activity was increased in both midgut and fat body tissues responding to Hg treatment. Conversely, glutathione S-transferase (GST) levels increased in the fat body but decreased in the midgut. The transcriptomic analysis revealed that the response induced by Hg stress involved multiple metabolism processes. Significantly differently expressed genes (DEGs) exhibited strong associations with oxidative phosphorylation, nutrient metabolisms, insect hormone biosynthesis, lysosome, ribosome biogenesis in eukaryotes, and ribosome pathways in the midgut or the fat body. The findings implied that exposure to Hg might induce the oxidative stress response, attempting to compensate for impaired metabolism. Concurrently, disruptions in nutrient metabolism and insect hormone activity might hinder growth and development, leading to immune dysfunction in silkworms. These insights significantly advance our theoretical understanding of the potential mechanisms underlying Hg toxicity in invertebrate organisms.

2.
AMB Express ; 14(1): 48, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38678482

ABSTRACT

Escherichia coli Nissle 1917 (EcN) is an important chassis strain widely used for the development of live biotherapeutic products (LBPs). EcN strain naturally harbors two cryptic plasmids with unknown function. During the development of LBPs using EcN strain, the cryptic plasmids were cured usually to avoid plasmid incompatibility or alleviate metabolic burdens associated with these cryptic plasmids. While the cryptic plasmids curing in EcN may appear to be a routine procedure, the comprehensive impact of cryptic plasmids curing on the EcN strain remains incompletely understood. In the present study, the effects of cryptic plasmids curing on EcN were investigated using transcriptome sequencing. The results revealed that only a small number of genes showed significant changes in mRNA levels after cryptic plasmid curing (4 upregulated and 6 downregulated genes), primarily involved in amino acid metabolism. Furthermore, the flu gene showed the most significant different expression, encoding Antigen 43 (Ag43) protein, a Cah family adhesin. Mass spectrometry analysis further confirmed the significant increase in Ag43 expression. Ag43 is commonly present in Escherichia coli and mediates the bacterial autoaggregation. However, despite the upregulation of Ag43 expression, no Ag43-mediated cell self-sedimentation was observed in the cured EcN strain. These findings contribute to making informed decisions regarding the curing of the cryptic plasmids when Escherichia coli Nissle 1917 is used as the chassis strain.

3.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139125

ABSTRACT

Alzheimer's disease (AD) is currently the most common neurodegenerative disease. Glycogen synthase kinase 3ß (GSK-3ß) is a pivotal factor in AD pathogenesis. Recent research has demonstrated that plant miRNAs exert cross-kingdom regulation on the target genes in animals. Gastrodia elata (G. elata) is a valuable traditional Chinese medicine that has significant pharmacological activity against diseases of the central nervous system (CNS). Our previous studies have indicated that G. elata-specific miRNA plays a cross-kingdom regulatory role for the NF-κB signaling pathway in mice. In this study, further bioinformatics analysis suggested that Gas-miR36-5p targets GSK-3ß. Through western blot, RT-qPCR, and assessments of T-AOC, SOD, and MDA levels, Gas-miR36-5p demonstrated its neuroprotective effects in an AD cell model. Furthermore, Gas-miR36-5p was detected in the murine brain tissues. The results of the Morris water maze test and western blot analysis provided positive evidence for reversing the learning deficits and hyperphosphorylation of Tau in AD mice, elucidating significant neuroprotective effects in an AD model following G. elata RNA administration. Our research emphasizes Gas-miR36-5p as a novel G. elata-specific miRNA with neuroprotective properties in Alzheimer's disease by targeting GSK-3ß. Consequently, our findings provide valuable insights into the cross-kingdom regulatory mechanisms underlying G. elata-specific miRNA, presenting a novel perspective for the treatment of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Animal Diseases , Gastrodia , MicroRNAs , Neurodegenerative Diseases , Neuroprotective Agents , Animals , Mice , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Gastrodia/genetics , Glycogen Synthase Kinase 3 beta/drug effects , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , MicroRNAs/metabolism , MicroRNAs/pharmacology , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphorylation , tau Proteins/metabolism
4.
Int J Neurosci ; : 1-11, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37965801

ABSTRACT

AIMS: Based on our previous research on the specific miRNAs identified from Gastrodia elata, we selected Gas-miR2-3p to investigate its effects on neuroinflammation via in vitro and in vivo experiments. RESULTS: RT-qPCR analysis indicated that G. elata specific Gas-miR2-3p was detected in all murine tissues post-oral administration, suggesting their potential as orally bioavailable miRNA. The analysis of RT-qPCR, Western blotting and ELISA assays consistently demonstrate that the expression of inflammatory factors as TNF-α, IL-6, IL-1ß was decreased and the expression levels of p-p65 and p-IκBα were downregulated after the action of Gas-miR2-3p in both cell and animal experiments. CONCLUSION: Gas-miR2-3p can attenuate neuroinflammation by regulating the inflammation factors and suppressing the activation of the NF-κB signaling pathway. Our findings indicate that G. elata miRNAs, as novel active components, perform a modulatory role in the NF-κB signaling pathway associated with neuroinflammation in a cross-species way.

5.
Mol Biol Rep ; 50(10): 8509-8521, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37642757

ABSTRACT

BACKGROUND: Protein acetylation is an important post-translational modification (PTM) that widely exists in organisms. As a reversible PTM, acetylation modification can regulate the function of proteins with high efficiency. In the previous study, the acetylation sites of silkworm proteins were identified on a large scale by nano-HPLC/MS/MS (nanoscale high performance liquid chromatography-tandem secondary mass spectrometry), and a total of 11 acetylation sites were discovered on Bombyx mori nutrient-storage protein SP3 (BmSP3). The purpose of this study was to investigate the effect of acetylation level on BmSP3. METHODS AND RESULTS: In this study, the acetylation of BmSP3 was further verified by immunoprecipitation (IP) and Western blotting. Then, it was confirmed that acetylation could up-regulate the expression of BmSP3 by improving its protein stability in BmN cells. Co-IP and RNAi experiments showed acetyltransferase BmCBP could bind to BmSP3 and catalyze its acetylation modification, then regulate the expression of BmSP3. Furthermore, the knock-down of BmCBP could improve the ubiquitination level of BmSP3. Both acetylation and ubiquitination occur on the side chain of lysine residues, therefore, we speculated that the acetylation of BmSP3 catalyzed by BmCBP could competitively inhibit its ubiquitination modification and improve its protein stability by inhibiting ubiquitin-mediated proteasome degradation pathway, and thereby increase the expression and intracellular accumulation. CONCLUSIONS: BmCBP catalyzes the acetylation of BmSP3 and may improve the stability of BmSP3 by competitive ubiquitination. This conclusion provides a new functional basis for the extensive involvement of acetylation in the regulation of nutrient storage and utilization in silkworm, Bombyx mori.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Acetylation , Tandem Mass Spectrometry , Protein Processing, Post-Translational , Nutrients , Acetyltransferases
6.
Insects ; 14(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37103124

ABSTRACT

Acetylation is an important and reversible post-translational modification (PTM) of protein, which is involved in many cellular physiological processes. In previous studies, lots of nutrient storage proteins were found to be highly acetylated in silkworms, and acetylation can improve the stability of these proteins. However, the related acetyltransferase was not involved. In the present work, a Bombyx mori nutrient storage protein, apolipophorin II (BmApoLp-II), was further confirmed to be acetylated, and the acetylation could improve its protein expression. Furthermore, RNAi and Co-IP showed that the acetyltransferase BmCBP was found to catalyze the acetylation modification of BmApoLp-II, and thus affect its protein expression. Meanwhile, it was proved that acetylation could improve the stability of the BmApoLp-II protein by completing its ubiquitination. These results lay a foundation for further study on the mechanism of regulating nutrition storage and hydrolysis utilization of storage proteins by BmCBP and the acetylation in the silkworm Bombyx mori.

7.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835371

ABSTRACT

The glucose regulated protein (GRP78) is an important chaperone for various environmental and physiological stimulations. Despite the importance of GRP78 in cell survival and tumor progression, the information regarding GRP78 in silkworm Bombyx mori L. is poorly explored. We previously identified that GRP78 expression was significantly upregulated in the silkworm Nd mutation proteome database. Herein, we characterized the GRP78 protein from silkworm B. mori (hereafter, BmGRP78). The identified BmGRP78 protein encoded a 658 amino acid residues protein with a predicted molecular weight of approximately 73 kDa and comprised of two structural domains, a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). BmGRP78 was ubiquitously expressed in all examined tissues and developmental stages by quantitative RT-PCR and Western blotting analysis. The purified recombinant BmGRP78 (rBmGRP78) exhibited ATPase activity and could inhibit the aggregating thermolabile model substrates. Heat-induction or Pb/Hg-exposure strongly stimulated the upregulation expression at the translation levels of BmGRP78 in BmN cells, whereas no significant change resulting from BmNPV infection was found. Additionally, heat, Pb, Hg, and BmNPV exposure resulted in the translocation of BmGRP78 into the nucleus. These results lay a foundation for the future identification of the molecular mechanisms related to GRP78 in silkworms.


Subject(s)
Bombyx , Endoplasmic Reticulum Chaperone BiP , Insect Proteins , Animals , Bombyx/genetics , Bombyx/metabolism , Bombyx/virology , Endoplasmic Reticulum Chaperone BiP/genetics , Endoplasmic Reticulum Chaperone BiP/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Lead/toxicity , Nucleopolyhedroviruses/genetics
8.
Appl Biochem Biotechnol ; 194(4): 1621-1635, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34826090

ABSTRACT

Acetylation is a highly conservative and reversible post-translational modification. Acetylation modification can regulate gene expression by altering protein function and is widely identified in an increasing number of species. Previously, the acetylated proteome of silkworm was identified by combining acetylated polypeptide enrichment with nano-HPLC/MS/MS; the identification revealed that the SP proteins (SPs) were high acetylated. In this study, the acetylation of SP1, one of the SPs, was further confirmed using immunoprecipitation (IP) and Western blotting. Then, we found the acetylation could upregulate SP1 protein expression by enhancing the protein stability. Further research found that the acetylation of SP1 protein can competitively inhibit its ubiquitination and thus improve the stability and cell accumulation of SP1 protein by inhibiting the ubiquitin-mediated proteasome degradation pathway. This result provides a basis for acetylation to regulate the nutrient storage and utilization of silkworm.


Subject(s)
Bombyx , Acetylation , Animals , Bombyx/genetics , Protein Processing, Post-Translational , Protein Stability , Tandem Mass Spectrometry
9.
Int Immunopharmacol ; 98: 107882, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34182245

ABSTRACT

Daphnetin (7, 8-dihydroxycoumarin, DAPH), a coumarin derivative isolated from Daphne odora var., recently draws much more attention as a promising drug candidate to treat neuroinflammatory diseases due to its protective effects against neuroinflammation. However, itscontribution to chronic inflammatory pain is largely unknown. In the current work, we investigated the effects of DAPH in a murine model of inflammatory pain induced by complete Freund's adjuvant (CFA) and its possible underlying mechanisms. Our results showed that DAPH treatment significantly attenuated mechanical allodynia provoked by CFA. A profound inhibition of spinal glial activation, followed by attenuated expression levels of spinal pro-inflammatory cytokines, was observed in DAPH-treated inflammatory pain mice. Further study demonstrated that DAPH mediated negative regulation of spinal NF-κB pathway, as well as its preferential activation of Nrf2/HO-1 signaling pathway in inflammatory pain mice. This study, for the first time, indicated that DAPH might preventthe development of mechanical allodynia in mice with inflammatory pain. And more importantly, these data provide evidence for the potential application of DAPH in the treatment of chronic inflammatory pain.


Subject(s)
Chronic Pain/drug therapy , Hyperalgesia/drug therapy , Pain/drug therapy , Umbelliferones/pharmacology , Animals , Chronic Pain/immunology , Chronic Pain/pathology , Disease Models, Animal , Drug Evaluation, Preclinical , Freund's Adjuvant/administration & dosage , Freund's Adjuvant/immunology , Heme Oxygenase-1/metabolism , Humans , Hyperalgesia/immunology , Hyperalgesia/pathology , Male , Membrane Proteins/metabolism , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neuroglia/drug effects , Neuroglia/immunology , Neuroglia/pathology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Pain/immunology , Pain/pathology , Signal Transduction/drug effects , Signal Transduction/immunology , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/pathology , Umbelliferones/therapeutic use
10.
Arch Insect Biochem Physiol ; 107(3): e21823, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34075635

ABSTRACT

The 30 K proteins are the major silkworm hemolymph proteins and are involved in a variety of physiological processes, such as nutrient and energy storage, embryogenesis, immune response, and inhibition of apoptosis. The Bm30K-15 protein is one of the 30 K proteins and is abundant in the hemolymph of fifth instar silkworm larva. We previously found that the Bm30K-15 protein can be acetylated. In the present study, we found that acetylation can improve the protein stability of Bm30K-15. Further exploration confirmed that the increase in protein stability by acetylation was caused by competition between acetylation and ubiquitination. In summary, these findings aim to provide insight into the effect of acetylation modification on the protein level and stability of the Bm30K-15 and the possible molecular mechanism of its existence in silkworm, Bombyx mori.


Subject(s)
Apolipoproteins/metabolism , Bombyx/metabolism , Insect Proteins/metabolism , Acetylation , Animals , Protein Stability , Ubiquitination , Up-Regulation
11.
Front Pharmacol ; 11: 542405, 2020.
Article in English | MEDLINE | ID: mdl-33101016

ABSTRACT

Gastrodia elata Blume (G. elata) is a valuable traditional Chinese medicine with neuroprotection, anti-inflammatory, and immune regulatory functions. MicroRNAs (miRNA) is a kind of endogenous noncoding small RNAs that plays distinctly important roles for gene regulation of organisms. So far, the research on G. elata is mainly focused on the pharmacological functions of the natural chemical ingredients, and the function of G. elata miRNA remains unknown. In this study, 5,718 known miRNAs and 38 novel miRNAs were identified by high-throughput sequencing from G. elata. Based on GO and KEGG analysis, we found that the human genes possibly regulated by G. elata miRNAs were related to the cell cycle, immune regulation, intercellular communication, etc. Furthermore, two novel miRNAs as Gas-miR01 and Gas-miR02 have stable and high expression in the medicinal tissues of G. elata. Further bioinformatics prediction showed that both Gas-miR01 and Gas-miR02 could target Homo sapiens A20 gene, furthermore, the dual-luciferase reporter gene assay and Western Blotting verified the interaction of Gas-miR01 or Gas-miR02 with A20. These evidences suggested that G. elata-unique miRNAs might be involved in certain physiological processes. The animal experiment showed that Gas-miR01 and Gas-miR02 could be detected in some tissues of mice by intragastric administration; meanwhile, the A20 expression in some tissues of mice was downregulated. These results supported for the functional study of G. elata miRNAs.

12.
J Texture Stud ; 51(4): 642-649, 2020 08.
Article in English | MEDLINE | ID: mdl-32112657

ABSTRACT

The current study aimed to determine the rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555 using different nitrogen sources. The viscosity and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555 from different ratios of inorganic, organic, and mixture of organic and inorganic nitrogen sources were measured under different conditions of pH, rotational speeds, and temperatures and also in the presence of various metal ions. Increasing the proportion of sodium nitrate (NaNO3 ) as the nitrogen source enhanced the viscosity and the ability of welan gum solution to resist high temperatures and salinity. The viscosity of welan gum solution derived from all three nitrogen sources gradually declined when the rotational speed was increased and stabilized at rotational speeds >30 rpm. The elastic modulus and viscous modulus were highest for a welan gum solution derived from 4.0 g/L NaNO3 . The viscosity, temperature, and salt tolerance were superior when a welan gum solution was produced from NaNO3 in comparison with that produced from organic nitrogen source.


Subject(s)
Nitrogen/chemistry , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/chemistry , Rheology , Sphingomonas/metabolism , Viscosity , Culture Media/chemistry , Fermentation , Hydrogen-Ion Concentration , Nitrates , Temperature
13.
Arch Insect Biochem Physiol ; 103(4): e21649, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31777104

ABSTRACT

Acetylation is an important, highly conserved, and reversible post-translational modification of proteins. Previously, we showed by nano-HPLC/MS/MS that many nutrient storage proteins in the silkworm are acetylated. Among these proteins, most of the known 30K proteins were shown to be acetylated, including 23 acetylated 30K proteins containing 49 acetylated sites (Kac), indicating the importance of the acetylation of 30K proteins in silkworm. In this study, Bm30K-3, a 30K protein containing three Kac sites, was further assessed in functional studies of its acetylation. Increasing the level of Bm30K-3 acetylation by adding the deacetylase inhibitor trichostatin A (TSA) increased the levels of this protein and further inhibited cellular apoptosis induced by H2 O2 . In contrast, decreasing the level of acetylation by adding the acetylase inhibitor C646 could reduce the level of Bm30K-3 and increase H2 O2 -induced apoptosis. Subsequently, BmN cells were treated with CHX and MG132, and increasing the acetylation level using TSA was shown to inhibit protein degradation and improve the stability of Bm30K-3. Furthermore, the acetylation of Bm30K-3 could compete with its ability to be ubiquitinated, suggesting that acetylation could inhibit the ubiquitin-mediated proteasome degradation pathway, improving the stability and accumulation of proteins in cells. These results further indicate that acetylation might regulate nutrition storage and utilization in Bombyx mori, which requires further study.


Subject(s)
Apoptosis/genetics , Bombyx/physiology , Insect Proteins/metabolism , Lysine/chemistry , Acetylation , Animals , Bombyx/genetics , Bombyx/growth & development , Hydroxamic Acids/chemistry , Larva/genetics , Larva/growth & development , Larva/physiology , Proteolysis/drug effects
14.
Gene ; 690: 113-119, 2019 Mar 30.
Article in English | MEDLINE | ID: mdl-30593917

ABSTRACT

MicroRNA is an important regulation factor in insect development and metamorphosis. It has been reported that E(spl)m4 is a miRNA-targeted gene, as well as the target of the Notch signaling pathway in Drosophila. The expression of E(spl)m4 can be regulated by microRNA and further affect the neural development of Drosophila. Here, we found that BmEm4, an ortholog of E(spl)m4 from Bombyx mori, was the target gene of bmo-miR-79, with target sites containing the Brd and K boxes of the BmEm4_3'UTR, which was validated by the dual luciferase reporter (DLR) assay. Furthermore, bmo-miR-79 mimics can inhibit the expression of BmEm4 in BmN cells after transfection, and bmo-miR-79 can also inhibit the expression of BmEm4 in different developmental stages of Bombyx mori at a posttranscriptional level, to different degrees. The EMSA test further showed that bmo-miR-79 could bind to BmAGO2, which is the Bombyx mori argonaute2 protein, suggesting that bmo-miR-79 might regulate the expression of BmEm4 by forming miRISC complexes with BmAGO2. Taken together, bmo-miR-79 could regulate the expression of BmEm4 mediated by BmAGO2 and further affect its function in the silkworm Bombyx mori.


Subject(s)
Argonaute Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Bombyx/growth & development , Down-Regulation , MicroRNAs/genetics , 3' Untranslated Regions , Animals , Basic Helix-Loop-Helix Transcription Factors/chemistry , Binding Sites , Bombyx/genetics , Cell Line , Gene Expression Regulation, Developmental , Insect Proteins/genetics , Metamorphosis, Biological , Signal Transduction
15.
Cell Cycle ; 17(23): 2577-2592, 2018.
Article in English | MEDLINE | ID: mdl-30488756

ABSTRACT

Oncogenic KIT or PDGFRA receptor tyrosine kinase (TK) mutations are compelling therapeutic targets in gastrointestinal stromal tumors (GISTs), and the KIT/PDGFRA kinase inhibitor, imatinib, is the standard of care for patients with metastatic GIST. However, approximately 10% of KIT-positive GIST metastases lose KIT expression at the time of clinical progression during imatinib therapy. In the present report, we performed TK-activation screens, using phosphotyrosine-TK double immunoaffinity purification and mass spectrometry, in GIST in vitro models lacking KIT expression. These studies demonstrated tyrosine-phosphorylated EGFR, AXL, and EPHA2 in four of six KIT-negative GIST lines (GIST62, GIST522, GIST54, GIST226, GIST48B, and GIST430B), and tyrosine-phosphorylated focal adhesion kinase (FAK) in each of the six KIT-negative lines. AXL expression was strong in KIT-negative or -weak clinical GIST samples that were obtained from progressing metastases during imatinib therapy. AXL knockdown inhibited viability in three KIT-negative GIST cell lines (GIST62, GIST54, and GIST522), but not in an AXL-negative, KIT-positive GIST control cell line (GIST430). AXL inhibition by R428, a specific AXL kinase inhibitor, reduced viability in AXL-activated GIST54. AXL knockdown in GIST62, GIST522, and GIST54 was accompanied by an increase in p21, p27, and p53 expression. By contrast, gefitinib-mediated EGFR inhibition, PF562271-mediated FAK inactivation, and shRNA-mediated knockdowns of EPHA2 and FAK had no effect on viability or colony formation of the KIT-negative GISTs. These findings highlight the potential relevance of AXL/p53 signaling as a therapeutic target in a subset of GISTs that have lost KIT oncoprotein expression.


Subject(s)
Proto-Oncogene Proteins c-kit/metabolism , Cell Line, Tumor , Cell Survival/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/pathology , Gefitinib/pharmacology , Humans , Imatinib Mesylate/pharmacology , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-kit/genetics , RNA Interference , RNA, Small Interfering/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, EphA2/antagonists & inhibitors , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Axl Receptor Tyrosine Kinase
16.
Arch Insect Biochem Physiol ; 98(3): e21463, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29569264

ABSTRACT

Alpha-tubulin N-acetyltransferase 1 (ATAT1) is an acetyltransferase specific to α-tubulin and performs important functions in many cellular processes. Bombyx mori is an economic insect and also known as a model lepidoptera insect. In this study, we cloned a B. mori ATAT1 gene (BmATAT1) (Gen Bank accession number: XP_004932777.1). BmATAT1 contained an open reading frame (ORF) of 1,065 bp encoding 355 amino acids (aa). Expression profiling of BmATAT1 protein showed that the expression levels of BmATAT1 at different developmental stages and different tissues in fifth-instar larvae differ. BmATAT1 was highly expressed at the egg stage and in the head of the fifth-instar larvae. Subcellular localization showed that BmATAT1 was distributed in the cytoplasm and nucleus. Furthermore, BmATAT1 may lead to time-dependent induction of cell cycle arrest in the G2/M phase by flow cytometry analysis. Interestingly, using site-specific mutation, immunoprecipitation, and Western blotting, we further found a BmATAT1 acetylated site at K156, suggesting that this acetyltransferase could be regulated by acetylation itself.


Subject(s)
Acetyltransferases/metabolism , Bombyx/enzymology , Tubulin/metabolism , Animals , Cell Cycle , Insect Proteins/metabolism , Larva/enzymology
17.
Sheng Wu Gong Cheng Xue Bao ; 34(1): 132-139, 2018 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-29380578

ABSTRACT

Antibacterial peptide can be easily degraded by protease and has the lethal effect on the host Escherichia coli. In order to solve these problems and further improve the expression ability of the Escherichia coli system, the antimicrobial peptide Spinosan-C of Paa spinosa was studied. First, the codon of Spinosan-C was optimized according to E. coli codon usage frequency. Then, the 8 multimeric Spinosan-C gene (8×Spinosan-C) was synthesized and cloned into prokaryotic expression vector pET-28a. The fusion antimicrobial peptide 8×Spinosan-C was further highly expressed in Escherichia coli strain Rosetta. The recombinant 8×Spinosan-C protein was then purified and cleaved specially by formic acid to generate the Spinosan-C monomer. Antibacterial test in vitro suggested that the cleaved Spinosan-C monomer had antibacterial bioactivity against the test bacteria. This study provides a technical reference for the largescale preparation of frog antimicrobial peptides.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Benzofurans/pharmacology , Escherichia coli/drug effects , Ranidae , Animals , Anti-Infective Agents , Recombinant Fusion Proteins
18.
Arch Microbiol ; 199(7): 1055-1064, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28396915

ABSTRACT

To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.


Subject(s)
Gene Expression Regulation, Bacterial/physiology , Nitrogen/metabolism , Polysaccharides, Bacterial/biosynthesis , Sphingomonas/genetics , Sphingomonas/metabolism , Base Sequence , Biomass , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Transcriptome/genetics
19.
BMC Genomics ; 18(1): 201, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28231766

ABSTRACT

BACKGROUND: A transposable element (TE) is a DNA fragment that can change its position within a genome. Transposable elements play important roles in maintaining the stability and diversity of organisms by transposition. Recent studies have shown that approximately half of the genes in Bombyx mori are TEs. RESULTS: We systematically identified and analyzed the BmAGO2-associated TEs, which exceed 100 in the B. mori genome. Additionally, we also mapped the small RNAs associated with BmAGO2 in B.mori. The transposon Bm1645 is the most abundant TE associated with BmAGO2, and Bm1645-derived small RNAs represent a small RNA pool. We determined the expression patterns of several Bm1645-derived small RNAs by northern blotting, and the results showed there was differential expression of multiple small RNAs in normal and BmNPV-infected BmN cells and silkworms from various developmental stages. We confirmed that four TE-siRNAs could bind to BmAGO2 using EMSA and also validated the recognition sites of these four TE-siRNAs in Bm1645 by dual-luciferase reporter assays. Furthermore, qRT-PCR analysis revealed the overexpression of the four TE-siRNAs could downregulate the expression of Bm1645 in BmN cells, and the transcription of Bm1645 was upregulated by the downregulation of BmAGO2. CONCLUSIONS: Our results suggest Bm1645 functions as a source of small RNAs pool and this pool can produce many BmAGO2-associated small RNAs that regulate TE's expression.


Subject(s)
Argonaute Proteins/genetics , Bombyx/genetics , DNA Transposable Elements , Gene Expression Regulation , RNA, Small Untranslated/genetics , Animals , Bombyx/virology , Chromosome Mapping , Down-Regulation , Multigene Family , RNA Interference , Reproducibility of Results
20.
J Mol Microbiol Biotechnol ; 27(1): 55-63, 2017.
Article in English | MEDLINE | ID: mdl-28092912

ABSTRACT

This study aimed to investigate the effect of nitrogen sources on the production and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555. Six different nitrogen sources were used for ATCC 31555 fermentation, and 2 of these were further analyzed due to their more positive influence on welan gum production and bacterial biomass. Bacterial biomass, welan gum yield, welan viscosity, molecular weight, monosaccharide composition, acyl content, and welan structure were analyzed. Welan gum production and the biomass concentration of ATCC 31555 were higher in media containing NaNO3 and beef extract. Welan viscosity decreased at higher temperatures of 30-90°C, and it increased with a higher welan concentration. In the media containing NaNO3 (3 g·L-1), welan viscosity was higher at 30-70°C and a welan solution concentration of 6-10 g·L-1. With a reduced NaNO3 concentration, the molecular weight of welan gum and the molar ratio of mannose decreased, but the molar ratio of glucuronic acid increased. With different nitrogen sources, the acetyl content of welan gum differed but its structure was similar. NaNO3 and beef extract facilitated welan production. A reduced NaNO3 concentration promoted welan viscosity.


Subject(s)
Chemical Phenomena , Gingiva/chemistry , Gingiva/metabolism , Nitrogen/metabolism , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/metabolism , Sphingomonas/metabolism , Biomass , Culture Media/chemistry , Fermentation , Molecular Weight , Monosaccharides/analysis , Nitrates/metabolism , Sphingomonas/growth & development , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...