Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-24580339

ABSTRACT

In a plane Couette cell a thin fluid layer consisting of water is sheared between the sides of a transparent band at Reynolds numbers ranging from 300 to 1400. The length of the cell's flow channel is large compared to the film separation. To extract the flow velocity in the experiments, a correlation image velocimetry method is used on pictures recorded with a high-speed camera. The flow is recorded at a resolution that allows us to analyze flow patterns similar in size to the film separation. The fluid flow is then studied by calculating flow velocity autocorrelation functions. The turbulent patterns that arise on this scale above a critical Reynolds number of Re=360 display characteristic patterns that are proven by use of the calculated velocity autocorrelation functions. The patterns are metastable and reappear at different positions and times throughout the experiments. Typically these patterns are turbulent rolls which are elongated in the stream direction, which is the direction in which the band is moving. Although the flow states are metastable they possess similarities to the steady Taylor vortices known to appear in circular Taylor Couette cells.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061315, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23367940

ABSTRACT

A transition in hydraulically induced granular displacement patterns is studied by means of discrete numerical molecular dynamics simulations. During this transition the patterns change from fractures and fingers to finely dispersed bubbles. The dynamics of the displacement patterns are studied in a rectangular Hele-Shaw cell filled with a dense but permeable two-dimensional granular layer. At one side of the cell the pressure of the compressible interstitial gas is increased. At the opposite side from the inlet of the cell a semipermeable boundary is located. This boundary is only permeable towards the gas phase while preventing grains from leaving the cell. The imposed pressure gradient compacts the grains. In the process we can identify and describe a mechanism that controls the transition of the emerging displacement patterns from fractures and fingers to finely dispersed bubbles as a function of the interstitial gas's properties and the characteristics of the granular phase.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 011301, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866605

ABSTRACT

We analyze the granular Rayleigh-Taylor instability of densely packed grains immersed in a compressible or an incompressible fluid using numerical simulations and two types of experiments. The simulations are based on a two-dimensional (2D) molecular dynamics model and the experiments have been carried out in systems of grains immersed in water/glycerol (incompressible fluid) and in air (compressible fluid). The variation of the interstitial fluid is shown to generate different dynamical patterns and mixing properties of the granular systems. The results have been quantified using 2D autocorrelation functions, the power spectrum of the velocity field and velocity field histograms. Excellent agreement is found between the numerical simulations and the experiments.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 1): 051302, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21230468

ABSTRACT

The effect of an interstitial fluid on the mixing of sedimenting grains is studied numerically in a closed rectangular Hele-Shaw cell. We investigate the impact of the fluid compressibility and fluid viscosity on the dynamics and structures of the granular Rayleigh-Taylor instability. First we discuss the effect of the fluid compressibility on the initial fluid pressure evolution and on the dynamics of the particles. Here, the emerging patterns do not seem highly affected by the compressibility change studied. To characterize the patterns and motion the combined length of the particle trajectories in relation to the movement of the center of mass is analyzed, and the separation of particle pairs is measured as a function of the fluid viscosity.


Subject(s)
Hydrodynamics , Models, Theoretical , Diffusion , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...