Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Curr Biol ; 31(15): 3457-3466.e4, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34237270

ABSTRACT

Large terrestrial carnivores have undergone some of the largest population declines and range reductions of any species, which is of concern as they can have large effects on ecosystem dynamics and function.1-4 The jaguar (Panthera onca) is the apex predator throughout the majority of the Neotropics; however, its distribution has been reduced by >50% and it survives in increasingly isolated populations.5 Consequently, the range-wide management of the jaguar depends upon maintaining core populations connected through multi-national, transboundary cooperation, which requires understanding the movement ecology and space use of jaguars throughout their range.6-8 Using GPS telemetry data for 111 jaguars from 13 ecoregions within the four biomes that constitute the majority of jaguar habitat, we examined the landscape-level environmental and anthropogenic factors related to jaguar home range size and movement parameters. Home range size decreased with increasing net productivity and forest cover and increased with increasing road density. Speed decreased with increasing forest cover with no sexual differences, while males had more directional movements, but tortuosity in movements was not related to any landscape factors. We demonstrated a synergistic relationship between landscape-scale environmental and anthropogenic factors and jaguars' spatial needs, which has applications to the conservation strategy for the species throughout the Neotropics. Using large-scale collaboration, we overcame limitations from small sample sizes typical in large carnivore research to provide a mechanism to evaluate habitat quality for jaguars and an inferential modeling framework adaptable to the conservation of other large terrestrial carnivores.


Subject(s)
Anthropogenic Effects , Motor Activity , Panthera , Spatial Behavior , Animals , Conservation of Natural Resources , Ecology , Ecosystem , Male
3.
Sci Rep ; 5: 11898, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26148488

ABSTRACT

Habitat loss and fragmentation are important factors determining animal population dynamics and spatial distribution. Such landscape changes can lead to the deleterious impact of a significant drop in the number of species, caused by critically reduced survival rates for organisms. In order to obtain a deeper understanding of the threeway interplay between habitat loss, fragmentation and survival rates, we propose here a spatially explicit multi-scaled movement model of individuals that search for habitat. By considering basic ecological processes, such as predation, starvation (outside the habitat area), and competition, together with dispersal movement as a link among habitat areas, we show that a higher survival rate is achieved in instances with a lower number of patches of larger areas. Our results demonstrate how movement may counterbalance the effects of habitat loss and fragmentation in altered landscapes. In particular, they have important implications for conservation planning and ecosystem management, including the design of specific features of conservation areas in order to enhance landscape connectivity and population viability.


Subject(s)
Models, Theoretical , Animals , Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...