Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Nano ; 17(20): 20194-20202, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37788293

ABSTRACT

Materials with disordered structures may exhibit interesting properties. Metal-organic frameworks (MOFs) are a class of hybrid materials composed of metal nodes and coordinating organic linkers. Recently, there has been growing interest in MOFs with structural disorder and the investigations of amorphous structures on surfaces. Herein, we demonstrate a bottom-up method to construct disordered molecular networks on metal surfaces by selecting two organic molecule linkers with the same symmetry but different sizes for preparing two-component samples with different stoichiometric ratios. The amorphous networks are directly imaged by scanning tunneling microscopy under ultrahigh vacuum with a submolecular resolution, allowing us to quantify its degree of disorder and other structural properties. Furthermore, we resort to molecular dynamics simulations to understand the formation of the amorphous metal-organic networks. The results may advance our understanding of the mechanism of formation of monolayer molecular networks with structural disorders, facilitating the design and exploration of amorphous MOF materials with intriguing properties.

2.
Chemistry ; 26(34): 7647-7656, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32031714

ABSTRACT

Ring/chain competition in oligomerization reactions represents a long-standing topic of synthetic chemistry and was treated extensively for solution reactions but is not well-understood for the two-dimensional confinement of surface reactions. Here, the kinetic and thermodynamic principles of ring/chain competition in on-surface synthesis are addressed by scanning tunneling microscopy, X-ray photoelectron spectroscopy, and Monte Carlo simulations applied to azulene-based organometallic oligomers on Cu(111). Analysis of experiments and simulations reveals how the ring/chain ratio can be controlled through variation of coverage and temperature. At room temperature, non-equilibrium conditions prevail and kinetic control leads to preferential formation of the entropically favored chains. In contrast, high-temperature equilibrium conditions are associated with thermodynamic control, resulting in increased yields of the energetically favored rings. The optimum conditions for ring formation include the lowest possible temperature within the regime of thermodynamic control and a low coverage. The general implications are discussed and compared to the solution case.

3.
Chemphyschem ; 21(7): 643-650, 2020 04 02.
Article in English | MEDLINE | ID: mdl-31894625

ABSTRACT

Directing the self-assembly of organic building blocks with 2D templates has been a promising method to create molecular superstructures having unique physicochemical properties. In this work the on-surface self-assembly of simple ditopic functional molecules confined inside periodic nanotemplates was modeled by means of the lattice Monte Carlo simulation method. Two types of confinement, that is honeycomb porous networks and parallel grooves of controlled diameter and width were used in the calculations. Additionally, the effect of (pro)chirality of the adsorbing molecules on the outcome of the templated self-assembly was examined. To that end, enantiopure and racemic assemblies were studied and the resulting structures were identified and classified. The obtained findings demonstrated that suitable tuning of the structural parameters of the templates enables directing the self-assembly towards linear and cyclic aggregates with controlled size. Moreover, chiral resolution of the molecular conformers using honeycomb networks with adjusted pore size was found possible. Our theoretical predictions can be helpful in designing structured surfaces to direct self-assembly and polymerization of organic functional building blocks.

4.
Chemphyschem ; 20(14): 1850-1859, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31095854

ABSTRACT

Surface-confined self-assembly of functional molecular building blocks has recently been widely used to create low-dimensional, also covalent, superstructures with tailorable geometry and physicochemical properties. In this contribution, using the lattice Monte Carlo simulation method, we demonstrate how the structure-property relation can be established for the 2D self-assembly of a model tetrapod molecule with reduced symmetry. To that end, a rigid functional unit comprising a few interconnected segments arranged in different tetrapod shapes was used and its self-assembly on a triangular lattice representing a (111) crystal surface was simulated. The results of our calculations show strong dependence of the structure formation on the molecular symmetry, in particular on the (pro)chiral nature of the building block. The simulations predicted the formation of unusual ordered racemic networks with unique aperiodic spatial distribution of the surface enantiomers. Molecular symmetry was also found to have significant influence on the enantiopure self-assembly which resulted in the Kagome and brickwall networks and other less ordered extended superstructures with parallelogram pores. The theoretical findings of this contribution can be relevant to designing and on-surface synthesis of molecular superstructures with predefined geometries and functions. In particular, the predicted molecular architectures can stimulate experimental efforts to fabricate and explore new nanostructures, for example graphitic, having the composition and geometry proposed in our study.

5.
Phys Chem Chem Phys ; 20(36): 23363-23377, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-30177976

ABSTRACT

Self-assembly of functional molecules on solid substrates has recently attracted special attention as a versatile method for the fabrication of low dimensional nanostructures with tailorable properties. In this contribution, using theoretical modeling, we demonstrate how the architecture of 2D molecular assemblies can be predicted based on the individual properties of elementary building blocks at play. To that end a model star-shaped tetratopic molecule is used and its self-assembly on a (111) surface is simulated using the lattice Monte Carlo method. Several test cases are studied in which the molecule bears terminal arm centers providing interactions with differently encoded directionality. Our theoretical results show that manipulation of the interaction directions can be an effective way to direct the self-assembly towards extended periodic superstructures (2D crystals) as well as to create assemblies characterized by a lower degree of order, including glassy overlayers and quasi one-dimensional molecular connections. The obtained structures are described and classified with respect to their main geometric parameters. A small library of the tetratopic molecules and the corresponding superstructures is provided to categorize the structure-property relationship in the modeled systems. The results of our simulations can be helpful to 2D crystal engineering and surface-confined polymerization techniques as they give hints on how to functionalize tetrapod organic building blocks which would be able to create superstructures with predefined spatial organization and range of order.

6.
Chem Commun (Camb) ; 54(63): 8749-8752, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30028459

ABSTRACT

Monte Carlo simulations were used to decipher the individual role of tripod molecular conformers in the surface-confined metal-organic self-assembly. Our calculations revealed the extent of structural heterogeneity introduced by the different conformers.

7.
J Am Chem Soc ; 139(39): 13749-13753, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28885024

ABSTRACT

Self-similar fractal structures are of fundamental importance in science, mathematics, and aesthetics. A series of molecular defect-free Sierpinski triangle fractals have been constructed on surfaces recently. However, the highest order of the fractals is only 4 because of the limitation of kinetic growth. Here complete fifth-order Sierpinski triangles with a lateral length of 0.05 µm were successfully prepared in ultrahigh vacuum by a combination of templating and coassembly methods. Fe atoms, 4,4″-dicyano-1,1':3',1″-terphenyl, and 1,3-bis(4-pyridyl)benzene molecules were used to build fractals on the reconstructed Au(100)-(hex) surface. The new strategy may be applied to construct various Sierpinski triangles of higher orders.

8.
ACS Nano ; 11(8): 8511-8518, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28726372

ABSTRACT

The self-assembly behavior of a V-shaped bispyridine, 1,3-bi(4-pyridyl)benzene (BPyB), was studied by scanning tunneling microscopy on the (111) surfaces of Cu, Ag, and Au. BPyB molecules coordinately bonded with active Cu adatoms on Cu(111) in the form of complete polygonal rings at low coverages. On Ag(111), BPyB molecules aggregated into two-dimensional islands by relatively weak intermolecular hydrogen bonds. The coexistence of hydrogen bonds and coordination interaction was observed on the BPyB-covered Au(111) substrate. Density functional theory calculations of the metal-molecule binding energy and Monte Carlo simulations were performed to help understand the forming mechanism of molecular superstructures on the surfaces. In particular, the comprehensive orbital composition analysis interprets the observed metal-organic complexes and reveals the importance of relativistic effects for the extraordinary activity of gold adatoms. The relativistic effects cause the energy stability of the Au 6s atomic orbital and decrease the energy separation between the Au 6s and 5d orbitals. The enhanced sd hybridization strengthens the N-Au-N bond in BPyB-Au-BPyB complexes.

9.
ACS Nano ; 10(12): 10901-10911, 2016 12 27.
Article in English | MEDLINE | ID: mdl-28024384

ABSTRACT

Self-assembly of 1,3,5-tris(4-mercaptophenyl)benzene (TMB), a 3-fold symmetric, thiol-functionalized aromatic molecule, was studied on Au(111) with the aim of realizing extended Au-thiolate-linked molecular architectures. The focus lay on resolving thermally activated structural and chemical changes by a combination of microscopy and spectroscopy. Thus, scanning tunneling microscopy (STM) provided submolecularly resolved structural information, while the chemical state of sulfur was assessed by X-ray photoelectron spectroscopy (XPS). Directly after room-temperature deposition, only less well ordered structures were observed. Mild annealing promoted the first structural transition into ordered molecular chains, partly organized in homochiral molecular braids. Further annealing led to self-similar Sierpinski triangles, while annealing at even higher temperatures again resulted in mostly disordered structures. Both the irregular aggregates observed at room temperature and the chains were identified as metal-organic assemblies, whereby two out of the three intermolecular binding motifs are energetically equivalent according to density functional theory (DFT) simulations. The emergence of Sierpinski triangles is driven by a chemical transformation, i.e., the conversion of coordinative Au-thiolate to covalent thioether linkages, and can be further understood by Monte Carlo simulations. The great structural variance of TMB on Au(111) can on one hand be explained by the energetic equivalence of two binding motifs. On the other hand, the unexpected chemical transition even enhances the structural variance and results in thiol-derived covalent molecular architectures.

10.
Nanoscale ; 8(16): 8568-74, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27049517

ABSTRACT

Two-dimensional polymers are of great interest for many potential applications in nanotechnology. The preparation of crystalline 2D polymers with a tunable band gap is critical for their applications in nano-electronics and optoelectronics. In this work, we try to tune the band gap of 2D imine polymers by expanding the conjugation of the backbone of aromatic diamines both laterally and longitudinally. STM characterization reveals that the regularity of the 2D polymers can be affected by the existence of lateral bulky groups. Density functional theory (DFT) simulations discovered a significant narrowing of the band gap of imine 2D polymers upon the expansion of the conjugation of the monomer backbone, which has been confirmed experimentally by UV absorption measurements. Monte Carlo simulations help us to gain further insight into the controlling factors of the formation of regular 2D polymers, which demonstrated that based on the all rigid assumption, the coexistence of different conformations of the imine moiety has a significant effect on the regularity of the imine 2D polymers.

11.
ACS Nano ; 9(12): 11909-15, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26502984

ABSTRACT

Recent studies demonstrate that simple functional molecules, which usually form two-dimensional (2D) crystal structures when adsorbed on solid substrates, are also able to self-assemble into ordered openwork fractal aggregates. To direct and control the growth of such fractal supramolecules, it is necessary to explore the conditions under which both fractal and crystalline patterns develop and coexist. In this contribution, we study the coexistence of Sierpinski triangle (ST) fractals and 2D molecular crystals that were formed by 4,4″-dihydroxy-1,1':3',1″-terphenyl molecules on Au(111) in ultrahigh vacuum. Growth competition between the STs and 2D crystals was realized by tuning substrate and molecular surface coverage and changing the functional groups of the molecular building block. Density functional theory calculations and Monte Carlo simulations are used to characterize the process. Both experimental and theoretical results demonstrate the possibility of steering the surface self-assembly to generate fractal and nonfractal structures made up of the same molecular building block.

12.
ACS Nano ; 8(8): 7880-9, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25036422

ABSTRACT

On-surface Ullmann coupling is a versatile and appropriate approach for the bottom-up fabrication of covalent organic nanostructures. In two-dimensional networks, however, the kinetically controlled and irreversible coupling leads to high defect densities and a lack of long-range order. To derive general guidelines for optimizing reaction parameters, the structural quality of 2D porous covalent networks was evaluated for different preparation protocols. For this purpose, polymerization of an iodine- and bromine-functionalized precursor was studied on Au(111) by scanning tunneling microscopy under ultrahigh vacuum conditions. By taking advantage of the vastly different temperature thresholds for C-Br and C-I cleavage, two different polymerization routes were compared - hierarchical and direct polymerization. The structural quality of the covalent networks was evaluated for different reaction parameters, such as surface temperatures, heating rates, and deposition rates by statistical analysis of STM data. Experimental results are compared to Monte Carlo simulations.

13.
Chemistry ; 19(42): 14143-50, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24000003

ABSTRACT

The formation of 2D surface-confined supramolecular porous networks is scientifically and technologically appealing, notably for hosting guest species and confinement phenomena. In this study, we report a scanning tunneling microscopy (STM) study of the self-assembly of a tripod molecule specifically equipped with pyridyl functional groups to steer a simultaneous expression of lateral pyridyl-pyridyl interactions and Cu-pyridyl coordination bonds. The assembly protocols yield a new class of porous open assemblies, the formation of which is driven by multiple interactions. The tripod forms a purely porous organic network on Ag(111), phase α, in which the presence of the pyridyl groups is crucial for porosity, as confirmed by molecular dynamics and Monte Carlo simulations. Additional deposition of Cu dramatically alters this scenario. For submonolayer coverage, three different porous phases coexist (i.e., ß, γ, and δ). Phases ß and γ are chiral and exhibit a simultaneous expression of lateral pyridyl-pyridyl interactions and twofold Cu-pyridyl linkages, whereas phase δ is just stabilized by twofold Cu-pyridyl bonds. An increase in the lateral molecular coverage results in a rise in molecular pressure, which leads to the formation of a new porous phase (ε), only coexisting with phase α and stabilized by a simultaneous expression of lateral pyridyl-pyridyl interactions and threefold Cu-pyridyl bonds. Our results will open new avenues to create complex porous networks on surfaces by exploiting components specifically designed for molecular recognition through multiple interactions.


Subject(s)
Macrocyclic Compounds/chemistry , Metals/chemistry , Organometallic Compounds/chemistry , Pyridines/chemistry , Copper/chemistry , Hydrogen Bonding , Microscopy, Scanning Tunneling , Models, Molecular , Nanostructures/chemistry , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...