Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Magn Reson Med ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860514

ABSTRACT

PURPOSE: Hyperpolarized 129Xe MRI benefits from non-Cartesian acquisitions that sample k-space efficiently and rapidly. However, their reconstructions are complex and burdened by decay processes unique to hyperpolarized gas. Currently used gridded reconstructions are prone to artifacts caused by magnetization decay and are ill-suited for undersampling. We present a compressed sensing (CS) reconstruction approach that incorporates magnetization decay in the forward model, thereby producing images with increased sharpness and contrast, even in undersampled data. METHODS: Radio-frequency, T1, and T 2 * $$ {\mathrm{T}}_2^{\ast } $$ decay processes were incorporated into the forward model and solved using iterative methods including CS. The decay-modeled reconstruction was validated in simulations and then tested in 2D/3D-spiral ventilation and 3D-radial gas-exchange MRI. Quantitative metrics including apparent-SNR and sharpness were compared between gridded, CS, and twofold undersampled CS reconstructions. Observations were validated in gas-exchange data collected from 15 healthy and 25 post-hematopoietic-stem-cell-transplant participants. RESULTS: CS reconstructions in simulations yielded images with threefold increases in accuracy. CS increased sharpness and contrast for ventilation in vivo imaging and showed greater accuracy for undersampled acquisitions. CS improved gas-exchange imaging, particularly in the dissolved-phase where apparent-SNR improved, and structure was made discernable. Finally, CS showed repeatability in important global gas-exchange metrics including median dissolved-gas signal ratio and median angle between real/imaginary components. CONCLUSION: A non-Cartesian CS reconstruction approach that incorporates hyperpolarized 129Xe decay processes is presented. This approach enables improved image sharpness, contrast, and overall image quality in addition to up-to threefold undersampling. This contribution benefits all hyperpolarized gas MRI through improved accuracy and decreased scan durations.

3.
Eur Respir J ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331459

ABSTRACT

BACKGROUND: Long COVID impacts ∼10% of people diagnosed with COVID-19, yet the pathophysiology driving ongoing symptoms is poorly understood. We hypothesised that 129Xe magnetic resonance imaging (MRI) could identify unique pulmonary phenotypic subgroups of long COVID, therefore we evaluated ventilation and gas exchange measurements with cluster analysis to generate imaging-based phenotypes. METHODS: COVID-negative controls and participants who previously tested positive for COVID-19 underwent 129XeMRI ∼14-months post-acute infection across three centres. Long COVID was defined as persistent dyspnea, chest tightness, cough, fatigue, nausea and/or loss of taste/smell at MRI; participants reporting no symptoms were considered fully-recovered. 129XeMRI ventilation defect percent (VDP) and membrane (Mem)/Gas, red blood cell (RBC)/Mem and RBC/Gas ratios were used in k-means clustering for long COVID, and measurements were compared using ANOVA with post-hoc Bonferroni correction. RESULTS: We evaluated 135 participants across three centres: 28 COVID-negative (40±16yrs), 34 fully-recovered (42±14yrs) and 73 long COVID (49±13yrs). RBC/Mem (p=0.03) and FEV1 (p=0.04) were different between long- and COVID-negative; FEV1 and all other pulmonary function tests (PFTs) were within normal ranges. Four unique long COVID clusters were identified compared with recovered and COVID-negative. Cluster1 was the youngest with normal MRI and mild gas-trapping; Cluster2 was the oldest, characterised by reduced RBC/Mem but normal PFTs; Cluster3 had mildly increased Mem/Gas with normal PFTs; and Cluster4 had markedly increased Mem/Gas with concomitant reduction in RBC/Mem and restrictive PFT pattern. CONCLUSION: We identified four 129XeMRI long COVID phenotypes with distinct characteristics. 129XeMRI can dissect pathophysiologic heterogeneity of long COVID to enable personalised patient care.

4.
Magn Reson Med ; 91(4): 1541-1555, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38084439

ABSTRACT

PURPOSE: The interaction between 129 Xe atoms and pulmonary capillary red blood cells provides cardiogenic signal oscillations that display sensitivity to precapillary and postcapillary pulmonary hypertension. Recently, such oscillations have been spatially mapped, but little is known about optimal reconstruction or sensitivity to artifacts. In this study, we use digital phantom simulations to specifically optimize keyhole reconstruction for oscillation imaging. We then use this optimized method to re-establish healthy reference values and quantitatively evaluate microvascular flow changes in patients with chronic thromboembolic pulmonary hypertension (CTEPH) before and after pulmonary thromboendarterectomy (PTE). METHODS: A six-zone digital lung phantom was designed to investigate the effects of radial views, key radius, and SNR. One-point Dixon 129 Xe gas exchange MRI images were acquired in a healthy cohort (n = 17) to generate a reference distribution and thresholds for mapping red blood cell oscillations. These thresholds were applied to 10 CTEPH participants, with 6 rescanned following PTE. RESULTS: For undersampled acquisitions, a key radius of 0.14 k max $$ 0.14{k}_{\mathrm{max}} $$ was found to optimally resolve oscillation defects while minimizing excessive heterogeneity. CTEPH participants at baseline showed higher oscillation defect + low (32 ± 14%) compared with healthy volunteers (18 ± 12%, p < 0.001). For those scanned both before and after PTE, oscillation defect + low decreased from 37 ± 13% to 23 ± 14% (p = 0.03). CONCLUSIONS: Digital phantom simulations have informed an optimized keyhole reconstruction technique for gas exchange images acquired with standard 1-point Dixon parameters. Our proposed methodology enables more robust quantitative mapping of cardiogenic oscillations, potentially facilitating effective regional quantification of microvascular flow impairment in patients with pulmonary vascular diseases such as CTEPH.


Subject(s)
Hypertension, Pulmonary , Lung Diseases , Humans , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Erythrocytes , Xenon Isotopes
5.
NMR Biomed ; 36(8): e4923, 2023 08.
Article in English | MEDLINE | ID: mdl-36914278

ABSTRACT

Hyperpolarized 129 Xe MRI (Xe-MRI) is increasingly used to image the structure and function of the lungs. Because 129 Xe imaging can provide multiple contrasts (ventilation, alveolar airspace size, and gas exchange), imaging often occurs over several breath-holds, which increases the time, expense, and patient burden of scans. We propose an imaging sequence that can be used to acquire Xe-MRI gas exchange and high-quality ventilation images within a single, approximately 10 s, breath-hold. This method uses a radial one-point Dixon approach to sample dissolved 129 Xe signal, which is interleaved with a 3D spiral ("FLORET") encoding pattern for gaseous 129 Xe. Thus, ventilation images are obtained at higher nominal spatial resolution (4.2 × 4.2 × 4.2 mm3 ) compared with gas-exchange images (6.25 × 6.25 × 6.25 mm3 ), both competitive with current standards within the Xe-MRI field. Moreover, the short 10 s Xe-MRI acquisition time allows for 1 H "anatomic" images used for thoracic cavity masking to be acquired within the same breath-hold for a total scan time of about 14 s. Images were acquired using this single-breath method in 11 volunteers (N = 4 healthy, N = 7 post-acute COVID). For 11 of these participants, a separate breath-hold was used to acquire a "dedicated" ventilation scan and five had an additional "dedicated" gas exchange scan. The images acquired using the single-breath protocol were compared with those from dedicated scans using Bland-Altman analysis, intraclass correlation (ICC), structural similarity, peak signal-to-noise ratio, Dice coefficients, and average distance. Imaging markers from the single-breath protocol showed high correlation with dedicated scans (ventilation defect percent, ICC = 0.77, p = 0.01; membrane/gas, ICC = 0.97, p = 0.001; red blood cell/gas, ICC = 0.99, p < 0.001). Images showed good qualitative and quantitative regional agreement. This single-breath protocol enables the collection of essential Xe-MRI information within one breath-hold, simplifying scanning sessions and reducing costs associated with Xe-MRI.


Subject(s)
COVID-19 , Xenon Isotopes , Humans , Lung/diagnostic imaging , Respiration , Breath Holding , Magnetic Resonance Imaging/methods , Gases
6.
J Magn Reson Imaging ; 56(4): 1207-1219, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35244302

ABSTRACT

BACKGROUND: 129 Xe gas-transfer MRI provides regional measures of pulmonary gas exchange in adults and separates xenon in interstitial lung tissue/plasma (barrier) from xenon in red blood cells (RBCs). The technique has yet to be demonstrated in pediatric populations or conditions. PURPOSE/HYPOTHESIS: To perform an exploratory analysis of 129 Xe gas-transfer MRI in children. STUDY TYPE: Prospective. POPULATION: Seventy-seven human volunteers (38 males, age = 17.7 ± 15.1 years, range 5-68 years, 16 healthy). Four pediatric disease cohorts. FIELD STRENGTH/SEQUENCE: 3-T, three-dimensional-radial one-point Dixon Fast Field Echo (FFE) Ultrashort Echo Time (UTE). ASSESSMENT: Breath hold compliance was assessed by quantitative signal-to-noise and dynamic metrics. Whole-lung means and standard deviations were extracted from gas-transfer maps. Gas-transfer metrics were investigated with respect to age and lung disease. Clinical pulmonary function tests were retrospectively acquired for reference lung disease severity. STATISTICAL TESTS: Wilcoxon rank-sum tests to compare age and disease cohorts, Wilcoxon signed-rank tests to compare pre- and post-breath hold vitals, Pearson correlations between age and gas-transfer metrics, and limits of normal with a binomial exact test to compare fraction of subjects with abnormal gas-transfer. P ≤ 0.05 was considered significant. RESULTS: Eighty percentage of pediatric subjects successfully completed 129 Xe gas-transfer MRI. Gas-transfer parameters differed between healthy children and adults, including ventilation (0.75 and 0.67) and RBC:barrier ratio (0.31 and 0.46) which also correlated with age (ρ = -0.76, 0.57, respectively). Bone marrow transplant subjects had impaired ventilation (90% of reference) and increased dissolved 129 Xe standard deviation (242%). Bronchopulmonary dysplasia subjects had decreased barrier-uptake (69%). Cystic fibrosis subjects had impaired ventilation (91%) and increased RBC-transfer (146%). Lastly, childhood interstitial lung disease subjects had increased ventilation heterogeneity (113%). Limits of normal provided detection of abnormalities in additional gas-transfer parameters. DATA CONCLUSION: Pediatric 129 Xe gas-transfer MRI was adequately successful and gas-transfer metrics correlated with age. Exploratory analysis revealed abnormalities in a variety of pediatric obstructive and restrictive lung diseases. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Lung Diseases , Xenon Isotopes , Adolescent , Adult , Aged , Child , Child, Preschool , Feasibility Studies , Humans , Imaging, Three-Dimensional/methods , Infant, Newborn , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Male , Middle Aged , Prospective Studies , Retrospective Studies , Xenon , Young Adult
7.
Semin Respir Crit Care Med ; 43(5): 613-626, 2022 10.
Article in English | MEDLINE | ID: mdl-35211923

ABSTRACT

Asthma is a heterogeneous disease characterized by chronic airway inflammation that affects more than 300 million people worldwide. Clinically, asthma has a widely variable presentation and is defined based on a history of respiratory symptoms alongside airflow limitation. Imaging is not needed to confirm a diagnosis of asthma, and thus the use of imaging in asthma has historically been limited to excluding alternative diagnoses. However, significant advances continue to be made in novel imaging methodologies, which have been increasingly used to better understand respiratory impairment in asthma. As a disease primarily impacting the airways, asthma is best understood by imaging methods with the ability to elucidate airway impairment. Techniques such as computed tomography, magnetic resonance imaging with gaseous contrast agents, and positron emission tomography enable assessment of the small airways. Others, such as optical coherence tomography and endobronchial ultrasound enable high-resolution imaging of the large airways accessible to bronchoscopy. These imaging techniques are providing new insights in the pathophysiology and treatments of asthma and are poised to impact the clinical management of asthma.


Subject(s)
Asthma , Contrast Media , Asthma/diagnostic imaging , Asthma/therapy , Bronchoscopy , Humans , Inflammation , Lung/diagnostic imaging , Tomography, X-Ray Computed/methods
8.
Magn Reson Med ; 87(3): 1490-1499, 2022 03.
Article in English | MEDLINE | ID: mdl-34644815

ABSTRACT

PURPOSE: To reduce scan duration in hyperpolarized 129 Xe 1-point Dixon gas exchange imaging by utilizing flip angle (FA)/TR equivalence. METHODS: Images were acquired in 12 subjects (n = 3 radiation therapy, n = 1 unexplained dyspnea, n = 8 healthy) using both standard (TR = 15 ms, FA = 20°, duration = 15 s, 998 projections) and "fast" (TR = 5.4 ms, FA = 12°, duration = 11.3 s, 2100 projections) acquisition parameters. For the fast acquisition, 3 image sets were reconstructed using subsets of 1900, 1500, and 1000 projections. From the resulting ventilation, tissue ("barrier"), and red blood cell (RBC) images, image metrics and biomarkers were compared to assess agreement between methods. RESULTS: Images acquired using both FA/TR settings had similar qualitative appearance. There were no significant differences in SNR, image mean, or image SD between images. Moreover, the percentage of the lungs in "defect", "normal", and "high" bins for each image (ventilation, RBC, barrier) was not significantly different among the acquisition types. After registration, comparison of 3D image metrics (Dice, volume similarity, average distance) agreed well between bins. Images using 1000 projections for reconstruction had no significant differences from images using all projections. CONCLUSION: Using flip angle/TR equivalence, hyperpolarized 129 Xe gas exchange images can be acquired via the 1-point Dixon technique in as little as 6 s, compared to ~15 s for previously reported parameter settings. The resulting images from this accelerated scan have no significant differences from the standard method in qualitative appearance or quantitative metrics.


Subject(s)
Breath Holding , Xenon Isotopes , Humans , Imaging, Three-Dimensional , Lung/diagnostic imaging , Magnetic Resonance Imaging
9.
NMR Biomed ; 35(3): e4639, 2022 03.
Article in English | MEDLINE | ID: mdl-34729838

ABSTRACT

RATIONALE: Hyperpolarized (HP) 129 Xe-MRI provides non-invasive methods to quantify lung function and structure, with the 129 Xe apparent diffusion coefficient (ADC) being a well validated measure of alveolar airspace size. However, the experimental factors that impact the precision and accuracy of HP 129 Xe ADC measurements have not been rigorously investigated. Here, we introduce an analytical model to predict the experimental uncertainty of 129 Xe ADC estimates. Additionally, we report ADC dependence on age in healthy pediatric volunteers. METHODS: An analytical expression for ADC uncertainty was derived from the Stejskal-Tanner equation and simplified Bloch equations appropriate for HP media. Parameters in the model were maximum b-value (bmax ), number of b-values (Nb ), number of phase encoding lines (Nph ), flip angle and the ADC itself. This model was validated by simulations and phantom experiments, and five fitting methods for calculating ADC were investigated. To examine the lower range for 129 Xe ADC, 32 healthy subjects (age 6-40 years) underwent diffusion-weighted 129 Xe MRI. RESULTS: The analytical model provides a lower bound on ADC uncertainty and predicts that decreased signal-to-noise ratio yields increases in relative uncertainty (ϵADC) . As such, experimental parameters that impact non-equilibrium 129 Xe magnetization necessarily impact the resulting ϵADC . The values of diffusion encoding parameters (Nb and bmax ) that minimize ϵADC strongly depend on the underlying ADC value, resulting in a global minimum for ϵADC . Bayesian fitting outperformed other methods (error < 5%) for estimating ADC. The whole-lung mean 129 Xe ADC of healthy subjects increased with age at a rate of 1.75 × 10-4  cm2 /s/yr (p = 0.001). CONCLUSIONS: HP 129 Xe diffusion MRI can be improved by minimizing the uncertainty of ADC measurements via uncertainty propagation. Doing so will improve experimental accuracy when measuring lung microstructure in vivo and should allow improved monitoring of regional disease progression and assessment of therapy response in a range of lung diseases.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Xenon Isotopes , Adolescent , Adult , Age Factors , Child , Diffusion , Female , Humans , Image Processing, Computer-Assisted , Male , Signal-To-Noise Ratio , Uncertainty , Young Adult
10.
Magn Reson Med ; 86(6): 2966-2986, 2021 12.
Article in English | MEDLINE | ID: mdl-34478584

ABSTRACT

Hyperpolarized (HP) 129 Xe MRI uniquely images pulmonary ventilation, gas exchange, and terminal airway morphology rapidly and safely, providing novel information not possible using conventional imaging modalities or pulmonary function tests. As such, there is mounting interest in expanding the use of biomarkers derived from HP 129 Xe MRI as outcome measures in multi-site clinical trials across a range of pulmonary disorders. Until recently, HP 129 Xe MRI techniques have been developed largely independently at a limited number of academic centers, without harmonizing acquisition strategies. To promote uniformity and adoption of HP 129 Xe MRI more widely in translational research, multi-site trials, and ultimately clinical practice, this position paper from the 129 Xe MRI Clinical Trials Consortium (https://cpir.cchmc.org/XeMRICTC) recommends standard protocols to harmonize methods for image acquisition in HP 129 Xe MRI. Recommendations are described for the most common HP gas MRI techniques-calibration, ventilation, alveolar-airspace size, and gas exchange-across MRI scanner manufacturers most used for this application. Moreover, recommendations are described for 129 Xe dose volumes and breath-hold standardization to further foster consistency of imaging studies. The intention is that sites with HP 129 Xe MRI capabilities can readily implement these methods to obtain consistent high-quality images that provide regional insight into lung structure and function. While this document represents consensus at a snapshot in time, a roadmap for technical developments is provided that will further increase image quality and efficiency. These standardized dosing and imaging protocols will facilitate the wider adoption of HP 129 Xe MRI for multi-site pulmonary research.


Subject(s)
Lung , Xenon Isotopes , Lung/diagnostic imaging , Magnetic Resonance Imaging , Multicenter Studies as Topic , Pulmonary Ventilation , Respiration
11.
J Magn Reson Open ; 6-72021 Jun.
Article in English | MEDLINE | ID: mdl-34414381

ABSTRACT

Structural remodeling in lung disease is progressive and heterogeneous, making temporally and spatially explicit information necessary to understand disease initiation and progression. While mouse models are essential to elucidate mechanistic pathways underlying disease, the experimental tools commonly available to quantify lung disease burden are typically invasive (e.g., histology). This necessitates large cross-sectional studies with terminal endpoints, which increases experimental complexity and expense. Alternatively, magnetic resonance imaging (MRI) provides information noninvasively, thus permitting robust, repeated-measures statistics. Although lung MRI is challenging due to low tissue density and rapid apparent transverse relaxation (T2* <1 ms), various imaging methods have been proposed to quantify disease burden. However, there are no widely accepted strategies for preclinical lung MRI. As such, it can be difficult for researchers who lack lung imaging expertise to design experimental protocols-particularly for novel mouse models. Here, we build upon prior work from several research groups to describe a widely applicable acquisition and analysis pipeline that can be implemented without prior preclinical pulmonary MRI experience. Our approach utilizes 3D radial ultrashort echo time (UTE) MRI with retrospective gating and lung segmentation is facilitated with a deep-learning algorithm. This pipeline was deployed to assess disease dynamics over 255 days in novel, transgenic mouse models of lung fibrosis based on disease-associated, loss-of-function mutations in Surfactant Protein-C. Previously identified imaging biomarkers (tidal volume, signal coefficient of variation, etc.) were calculated semi-automatically from these data, with an objectively-defined high signal volume identified as the most robust metric. Beyond quantifying disease dynamics, we discuss common pitfalls encountered in preclinical lung MRI and present systematic approaches to identify and mitigate these challenges. While the experimental results and specific pedagogical examples are confined to lung fibrosis, the tools and approaches presented should be broadly useful to quantify structural lung disease in a wide range of mouse models.

12.
NMR Biomed ; 34(3): e4464, 2021 03.
Article in English | MEDLINE | ID: mdl-33354833

ABSTRACT

Hyperpolarized (HP) 129 Xe MRI is increasingly used to noninvasively probe regional lung structure and function in the preclinical setting. As in human imaging, the primary barrier to quantitative imaging with HP gases is nonequilibrium magnetization, which is depleted by T1 relaxation and radio frequency excitation. Preclinical HP gas imaging commonly involves mechanically ventilating small animals and encoding k-space over tens or hundreds of breaths, with small subsets of k-space data collected within each breath. Breath-to-breath magnetization renewal enables the use of large flip angles, but the resulting magnetization decay generates large view-to-view differences in within-breath signal intensity, leading to artifacts and degraded image quality. This deleterious signal decay has motivated the use of variable flip angle (VFA) sampling schemes, in which the flip angle is progressively increased to maintain constant view-to-view signal intensity. However, VFA imaging complicates data acquisition and provides only a global correction that fails to compensate for regional differences in signal dynamics. When constant flip angle (CFA) imaging is used alongside 3D radial golden means acquisition, the center of k-space is sampled with every excitation, thereby encoding signal dynamics alongside imaging data. Here, keyhole reconstruction is used to generate multiple images to capture in-breath HP 129 Xe signal dynamics in mice and thus provide flip angle maps to quantitatively correct images without extra data collection. These CFA images display SNR that is not significantly different from VFA images, and further, high frequency k-space scaling can be used to mitigate decay-induced image artifacts. Results are supported by point spread function calculations and simulations of radial imaging with preclinical signal dynamics. Together, these results show that CFA 3D radial golden means ventilation imaging provides comparable image quality with VFA in small animals and allows for keyhole reconstruction, which can be used to generate flip angle maps and correct images for signal depletion.


Subject(s)
Magnetic Resonance Imaging , Respiration , Xenon Isotopes/chemistry , Animals , Computer Simulation , Databases as Topic , Female , Image Processing, Computer-Assisted , Male , Mice, Inbred C57BL , Radio Waves , Signal Processing, Computer-Assisted
13.
Magn Reson Med ; 85(4): 2160-2173, 2021 04.
Article in English | MEDLINE | ID: mdl-33017076

ABSTRACT

PURPOSE: Diffusion and lung morphometry imaging using hyperpolarized gases are promising tools to quantify pulmonary microstructure noninvasively in humans and in animal models. These techniques assume the motion encoded is exclusively diffusive gas displacement, but the impact of cardiac motion on measurements has never been explored. Furthermore, although diffusion morphometry has been validated against histology in humans and mice using 3 He, it has never been validated in mice for 129 Xe. Here, we examine the effect of cardiac motion on diffusion imaging and validate 129 Xe diffusion morphometry in mice. THEORY AND METHODS: Mice were imaged using gradient-echo-based diffusion imaging, and apparent diffusion-coefficient (ADC) maps were generated with and without cardiac gating. Diffusion-weighted images were fit to a previously developed theoretical model using Bayesian probability theory, producing morphometric parameters that were compared with conventional histology. RESULTS: Cardiac gating had no significant impact on ADC measurements (dual-gating: ADC = 0.020 cm2 /s, single-gating: ADC = 0.020 cm2 /s; P = .38). Diffusion-morphometry-generated maps of ADC (mean, 0.0165 ± 0.0001 cm2 /s) and acinar dimensions (alveolar sleeve depth [h] = 44 µm, acinar duct radii [R] = 99 µm, mean linear intercept [Lm ] = 74 µm) that agreed well with conventional histology (h = 45 µm, R = 108 µm, Lm = 63 µm). CONCLUSION: Cardiac motion has negligible impact on 129 Xe ADC measurements in mice, arguing its impact will be similarly minimal in humans, where relative cardiac motion is reduced. Hyperpolarized 129 Xe diffusion morphometry accurately and noninvasively maps the dimensions of lung microstructure, suggesting it can quantify the pulmonary microstructure in mouse models of lung disease.


Subject(s)
Diffusion Magnetic Resonance Imaging , Xenon Isotopes , Animals , Bayes Theorem , Diffusion , Helium , Lung/diagnostic imaging , Male , Mice
14.
J Appl Physiol (1985) ; 129(2): 218-229, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32552429

ABSTRACT

Magnetic resonance (MR) imaging and spectroscopy using dissolved hyperpolarized (HP) 129Xe have expanded the ability to probe lung function regionally and noninvasively. In particular, HP 129Xe imaging has been used to quantify impaired gas uptake by the pulmonary tissues. Whole-lung spectroscopy has also been used to assess global cardiogenic oscillations in the MR signal intensity originating from 129Xe dissolved in the red blood cells of pulmonary capillaries. Herein, we show that the magnitude of these cardiogenic dynamics can be mapped three dimensionally using radial MRI, because dissolved 129Xe dynamics are encoded directly in the raw imaging data. Specifically, 1-point Dixon imaging is combined with postacquisition keyhole image reconstruction to assess regional blood volume fluctuations within the pulmonary microvasculature throughout the cardiac cycle. This "oscillation mapping" was applied in healthy subjects (mean amplitude 9% of total RBC signal) and patients with pulmonary arterial hypertension (PAH; mean 4%) and idiopathic pulmonary fibrosis (IPF; mean 14%). Whole-lung mean values from these oscillation maps correlated strongly with spectroscopy and clinical pulmonary function testing, but exhibited significant regional heterogeneity, including gravitationally dependent gradients in healthy subjects. Moreover, regional oscillations were found to be sensitive to disease state. Greater percentages of the lungs exhibit low-amplitude oscillations in PAH patients, and longitudinal imaging shows high-amplitude oscillations increase significantly over time (4-14 mo, P = 0.02) in IPF patients. This technique enables regional dynamics within the pulmonary capillary bed to be measured, and in doing so, provides insight into the origin and progression of pathophysiology within the lung microvasculature.NEW & NOTEWORTHY Spatially heterogeneous abnormalities within the lung microvasculature contribute to pathology in various cardiopulmonary diseases but are difficult to assess noninvasively. Hyperpolarized 129Xe MRI is a noninvasive method to probe lung function, including regional gas exchange between pulmonary air spaces and capillaries. We show that cardiogenic oscillations in the raw dissolved 129Xe MRI signal from pulmonary capillary red blood cells can be imaged using a postacquisition reconstruction technique, providing a new means of assessing regional lung microvasculature function and disease state.


Subject(s)
Idiopathic Pulmonary Fibrosis , Xenon Isotopes , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Microvessels/diagnostic imaging
15.
NMR Biomed ; 33(7): e4302, 2020 07.
Article in English | MEDLINE | ID: mdl-32285574

ABSTRACT

Fast apparent transverse relaxation (short T2 *) is a common obstacle when attempting to perform quantitative 1 H MRI of the lungs. While T2 * times are longer for pulmonary hyperpolarized (HP) gas functional imaging (in particular for gaseous 129 Xe), T2 * can still lead to quantitative inaccuracies for sequences requiring longer echo times (such as diffusion weighted images) or longer readout duration (such as spiral sequences). This is especially true in preclinical studies, where high magnetic fields lead to shorter relaxation times than are typically seen in human studies. However, the T2 * of HP 129 Xe in the most common animal model of human disease (mice) has not been reported. Herein, we present a multi-echo radial flyback imaging sequence and use it to measure HP 129 Xe T2 * at 7 T under a variety of respiratory conditions. This sequence mitigates the impact of T1 relaxation outside the animal by using multiple gradient-refocused echoes to acquire images at a number of effective echo times for each RF excitation. After validating the sequence using a phantom containing water doped with superparamagnetic iron oxide nanoparticles, we measured the 129 Xe T2 * in vivo for 10 healthy C57Bl/6 J mice and found T2 * ~ 5 ms in the lung airspaces. Interestingly, T2 * was relatively constant over all experimental conditions, and varied significantly with sex, but not age, mass, or the O2 content of the inhaled gas mixture. These results are discussed in the context of T2 * relaxation within porous media.


Subject(s)
Lung/diagnostic imaging , Magnetic Resonance Imaging , Respiration , Xenon Isotopes/chemistry , Animals , Female , Image Processing, Computer-Assisted , Male , Mice, Inbred C57BL , Phantoms, Imaging
16.
Magn Reson Med ; 84(1): 312-320, 2020 07.
Article in English | MEDLINE | ID: mdl-31788858

ABSTRACT

PURPOSE: Hyperpolarized 129 Xe MRI characterizes regional lung ventilation in a variety of disease populations, with high sensitivity to airway obstruction in early disease. However, ventilation images are usually limited to a single breath-hold and most-often acquired using gradient-recalled echo sequences with thick slices (~10-15 mm), which increases partial-volume effects, limits ability to observe small defects, and suffers from imperfect slice selection. We demonstrate higher-resolution ventilation images, in shorter breath-holds, using FLORET (Fermat Looped ORthogonally Encoded Trajectories), a center-out 3D-spiral UTE sequence. METHODS: In vivo human adult (N = 4; 2 healthy, 2 with cystic fibrosis) 129 Xe images were acquired using 2D gradient-recalled echo, 3D radial, and FLORET. Each sequence was acquired at its highest possible resolution within a 16-second breath-hold with a minimum voxel dimension of 3 mm. Images were compared using 129 Xe ventilation defect percentage, SNR, similarity coefficients, and vasculature cross-sections. RESULTS: The FLORET sequence obtained relative normalized SNR, 40% greater than 2D gradient-recalled echo (P = .012) and 26% greater than 3D radial (P = .067). Moreover, the FLORET images were acquired with 3-fold-higher nominal resolution in a 15% shorter breath-hold. Finally, vasculature was less prominent in FLORET, likely due to diminished susceptibility-induced dephasing at shorter TEs afforded by UTE sequences. CONCLUSION: The FLORET sequence yields higher SNR for a given resolution with a shorter breath-hold than traditional ventilation imaging techniques. This sequence more accurately measures ventilation abnormalities and enables reduced scan times in patients with poor compliance and severe lung disease.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Adult , Breath Holding , Humans , Lung/diagnostic imaging , Pulmonary Ventilation , Respiration
17.
Magn Reson Med ; 82(1): 367-376, 2019 07.
Article in English | MEDLINE | ID: mdl-30847967

ABSTRACT

PURPOSE: Hyperpolarized (HP) media enable biomedical imaging applications that cannot be achieved with conventional MRI contrast agents. Unfortunately, quantifying HP images is challenging, because relaxation and radio-frequency pulsing generate spatially varying signal decay during acquisition. We demonstrate that, by combining center-out k-space sampling with postacquisition keyhole reconstruction, voxel-by-voxel maps of regional HP magnetization decay can be generated with no additional data collection. THEORY AND METHODS: Digital phantom, HP 129 Xe phantom, and in vivo 129 Xe human (N = 4 healthy; N = 2 with cystic fibrosis) imaging was performed using radial sampling. Datasets were reconstructed using a postacquisition keyhole approach in which 2 temporally resolved images were created and used to generate maps of regional magnetization decay following a simple analytical model. RESULTS: Mean, keyhole-derived decay terms showed excellent agreement with the decay used in simulations (R2 = 0.996) and with global attenuation terms in HP 129 Xe phantom imaging (R2 > 0.97). Mean regional decay from in vivo imaging agreed well with global decay values and displayed spatial heterogeneity that matched expected variations in flip angle and oxygen partial pressure. Moreover, these maps could be used to correct variable signal decay across the image volume. CONCLUSIONS: We have demonstrated that center-out trajectories combined with keyhole reconstruction can be used to map regional HP signal decay and to quantitatively correct images. This approach may be used to improve the accuracy of quantitative measures obtained from hyperpolarized media. Although validated with gaseous HP 129 Xe in this work, this technique can be generalized to any hyperpolarized agent.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted , Adolescent , Adult , Child , Child, Preschool , Contrast Media , Cystic Fibrosis/diagnostic imaging , Female , Humans , Lung/diagnostic imaging , Male , Phantoms, Imaging , Xenon Isotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...