Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(3): 033601, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-32031825

ABSTRACT

Atomic self-ordering to a crystalline phase in optical resonators is a consequence of the intriguing nonlinear dynamics of strongly coupled atom motion and photons. Generally the resulting phase diagrams and atomic states can be largely understood on a mean-field level. However, close to the phase transition point, quantum fluctuations and atom-field entanglement play a key role and initiate the symmetry breaking. Here we propose a modified ring cavity geometry, in which the asymmetry imposed by a tilted pump beam reveals clear signatures of quantum dynamics even in a larger regime around the phase transition point. Quantum fluctuations become visible both in the dynamic and steady-state properties. Most strikingly we can identify a regime where a mean-field approximation predicts a runaway instability, while in the full quantum model the quantum fluctuations of the light field modes stabilize uniform atomic motion. The proposed geometry thus allows to unveil the "quantumness" of atomic self-ordering via experimentally directly accessible quantities.

2.
Phys Rev E ; 99(4-1): 042145, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108663

ABSTRACT

We investigate the evolution of a target qubit caused by its multiple random collisions with N-qubit clusters. Depending on the cluster state, the evolution of the target qubit may correspond to its effective interaction with a thermal bath, a coherent (laser) drive, or a squeezed bath. In cases where the target qubit relaxes to a thermal state, its dynamics can exhibit a quantum advantage, whereby the target-qubit temperature can be scaled up proportionally to N^{2} and the thermalization time can be shortened by a similar factor, provided the appropriate coherence in the cluster is prepared by nonthermal means. We dub these effects quantum superthermalization because of the analogies to superradiance. Experimental realizations of these effects are suggested.

3.
Proc Natl Acad Sci U S A ; 115(40): 9941-9944, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30228114

ABSTRACT

Heat engines, which cyclically transform heat into work, are ubiquitous in technology. Lasers and masers may be viewed as heat engines that rely on population inversion or coherence in the active medium. Here we put forward an unconventional paradigm of a remarkably simple and robust electromagnetic heat-powered engine that bears basic differences to any known maser or laser: The proposed device makes use of only one Raman transition and does not rely on population inversion or coherence in its two-level working medium. Nor does it require any coherent driving. The engine can be powered by the ambient temperature difference between the sky and the ground surface. Its autonomous character and "free" power source make this engine conceptually and technologically enticing.

4.
Nat Commun ; 9(1): 165, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323109

ABSTRACT

According to the second law, the efficiency of cyclic heat engines is limited by the Carnot bound that is attained by engines that operate between two thermal baths under the reversibility condition whereby the total entropy does not increase. Quantum engines operating between a thermal and a squeezed-thermal bath have been shown to surpass this bound. Yet, their maximum efficiency cannot be determined by the reversibility condition, which may yield an unachievable efficiency bound above unity. Here we identify the fraction of the exchanged energy between a quantum system and a bath that necessarily causes an entropy change and derive an inequality for this change. This inequality reveals an efficiency bound for quantum engines energised by a non-thermal bath. This bound does not imply reversibility, unless the two baths are thermal. It cannot be solely deduced from the laws of thermodynamics.

5.
Article in English | MEDLINE | ID: mdl-26565184

ABSTRACT

We present the general theory of a quantum heat machine based on an N-level system (working medium) whose N-1 excited levels are degenerate, a prerequisite for steady-state interlevel coherence. Our goal is to find out the extent to which coherence in the working medium is an asset for heat machines. The performance bounds of such a machine are common to (reciprocating) cycles that consist of consecutive strokes and continuous cycles wherein the periodically driven system is constantly coupled to cold and hot heat baths. Intriguingly, we find that the machine's performance strongly depends on the relative orientations of the transition-dipole vectors in the system. Perfectly aligned (parallel) transition dipoles allow for steady-state coherence effects, but also give rise to dark states, which hinder steady-state thermalization and thus reduce the machine's performance. Similar thermodynamic properties hold for N two-level atoms conforming to the Dicke model. We conclude that level degeneracy, but not necessarily coherence, is a thermodynamic resource, equally enhancing the heat currents and the power output of the heat machine. By contrast, the efficiency remains unaltered by this degeneracy and adheres to the Carnot bound.

6.
Sci Rep ; 5: 14413, 2015 Sep 23.
Article in English | MEDLINE | ID: mdl-26394838

ABSTRACT

We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...