Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190558, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32448064

ABSTRACT

Patient-specific cardiac models are now being used to guide therapies. The increased use of patient-specific cardiac simulations in clinical care will give rise to the development of virtual cohorts of cardiac models. These cohorts will allow cardiac simulations to capture and quantify inter-patient variability. However, the development of virtual cohorts of cardiac models will require the transformation of cardiac modelling from small numbers of bespoke models to robust and rapid workflows that can create large numbers of models. In this review, we describe the state of the art in virtual cohorts of cardiac models, the process of creating virtual cohorts of cardiac models, and how to generate the individual cohort member models, followed by a discussion of the potential and future applications of virtual cohorts of cardiac models. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Subject(s)
Models, Cardiovascular , Patient-Specific Modeling , Cohort Studies , Computational Biology , Humans , Machine Learning , User-Computer Interface
2.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190334, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32448071

ABSTRACT

Cardiac contraction is the result of integrated cellular, tissue and organ function. Biophysical in silico cardiac models offer a systematic approach for studying these multi-scale interactions. The computational cost of such models is high, due to their multi-parametric and nonlinear nature. This has so far made it difficult to perform model fitting and prevented global sensitivity analysis (GSA) studies. We propose a machine learning approach based on Gaussian process emulation of model simulations using probabilistic surrogate models, which enables model parameter inference via a Bayesian history matching (HM) technique and GSA on whole-organ mechanics. This framework is applied to model healthy and aortic-banded hypertensive rats, a commonly used animal model of heart failure disease. The obtained probabilistic surrogate models accurately predicted the left ventricular pump function (R2 = 0.92 for ejection fraction). The HM technique allowed us to fit both the control and diseased virtual bi-ventricular rat heart models to magnetic resonance imaging and literature data, with model outputs from the constrained parameter space falling within 2 SD of the respective experimental values. The GSA identified Troponin C and cross-bridge kinetics as key parameters in determining both systolic and diastolic ventricular function. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.

3.
J Interv Card Electrophysiol ; 57(1): 115-123, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31201592

ABSTRACT

PURPOSE: It is uncertain whether right ventricular (RV) lead position in cardiac resynchronization therapy impacts response. There has been little detailed analysis of the activation patterns in RV septal pacing (RVSP), especially in the CRT population. We compare left bundle branch block (LBBB) activation patterns with RV pacing (RVP) within the same patients with further comparison between RV apical pacing (RVAP) and RVSP. METHODS: Body surface mapping was undertaken in 14 LBBB patients after CRT implantation. Nine patients had RVAP, 5 patients had RVSP. Activation parameters included left ventricular total activation time (LVtat), biventricular total activation time (VVtat), interventricular electrical synchronicity (VVsync), and dispersion of left ventricular activation times (LVdisp). The direction of activation wave front was also compared in each patient (wave front angle (WFA)). In silico computer modelling was applied to assess the effect of RVAP and RVSP in order to validate the clinical results. RESULTS: Patients were aged 64.6 ± 12.2 years, 12 were male, 8 were ischemic. Baseline QRS durations were 157 ± 18 ms. There was no difference in VVtat between RVP and LBBB but a longer LVtat in RVP (102.8 ± 19.6 vs. 87.4 ± 21.1 ms, p = 0.046). VVsync was significantly greater in LBBB (45.1 ± 20.2 vs. 35.9 ± 17.1 ms, p = 0.01) but LVdisp was greater in RVP (33.4 ± 5.9 vs. 27.6 ± 6.9 ms, p = 0.025). WFA did rotate clockwise with RVP vs. LBBB (82.5 ± 25.2 vs. 62.1 ± 31.7 op = 0.026). None of the measurements were different to LBBB with RVSP; however, the differences were preserved with RVAP for VVsync, LVdisp, and WFA. In silico modelling corroborated these results. CONCLUSIONS: RVAP activation differs from LBBB where RVSP appears similar. TRIAL REGISTRATION: (ClinicalTrials.gov identifier: NCT01831518).


Subject(s)
Bundle-Branch Block/therapy , Cardiac Resynchronization Therapy/methods , Heart Ventricles , Aged , Body Surface Potential Mapping , Computer Simulation , Electrocardiography , Female , Humans , Male , Middle Aged , Tomography, X-Ray Computed
4.
Med Image Anal ; 57: 197-213, 2019 10.
Article in English | MEDLINE | ID: mdl-31326854

ABSTRACT

BACKGROUND: Cardiac Resynchronization Therapy (CRT) is one of the few effective treatments for heart failure patients with ventricular dyssynchrony. The pacing location of the left ventricle is indicated as a determinant of CRT outcome. OBJECTIVE: Patient specific computational models allow the activation pattern following CRT implant to be predicted and this may be used to optimize CRT lead placement. METHODS: In this study, the effects of heterogeneous cardiac substrate (scar, fast endocardial conduction, slow septal conduction, functional block) on accurately predicting the electrical activation of the LV epicardium were tested to determine the minimal detail required to create a rule based model of cardiac electrophysiology. Non-invasive clinical data (CT or CMR images and 12 lead ECG) from eighteen patients from two centers were used to investigate the models. RESULTS: Validation with invasive electro-anatomical mapping data identified that computer models with fast endocardial conduction were able to predict the electrical activation with a mean distance errors of 9.2 ±â€¯0.5 mm (CMR data) or (CT data) 7.5 ±â€¯0.7 mm. CONCLUSION: This study identified a simple rule-based fast endocardial conduction model, built using non-invasive clinical data that can be used to rapidly and robustly predict the electrical activation of the heart. Pre-procedural prediction of the latest electrically activating region to identify the optimal LV pacing site could potentially be a useful clinical planning tool for CRT procedures.


Subject(s)
Cardiac Resynchronization Therapy , Electrophysiologic Techniques, Cardiac , Heart Conduction System/physiopathology , Heart Failure/physiopathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging, Cine , Tomography, X-Ray Computed , Electrocardiography , Epicardial Mapping , Humans , Predictive Value of Tests
5.
Br J Pharmacol ; 175(5): 763-781, 2018 03.
Article in English | MEDLINE | ID: mdl-29161764

ABSTRACT

BACKGROUND AND PURPOSE: Doxorubicin (DOX) is an effective cancer therapeutic agent but causes therapy-limiting cardiotoxicity. The effects of DOX and its metabolite doxorubicinol (DOXL) on individual channels have been well characterized in isolation. However, it is unknown how the action and interaction of affected channels combine to generate the phenotypic cardiotoxic outcome. We sought to develop an in silico model that links drug effects on channels to action potential duration (APD) and intracellular Ca2+ concentration in order to address this gap in knowledge. EXPERIMENTAL APPROACH: We first propose two methods to obtain, from published values, consensus drug effects on the currents of individual channels, transporters and pumps. Separately, we obtained equivalent values for APD and Ca2+ concentration (the readouts used as surrogates for cardiotoxicity). Once derived, the consensus effects on the currents were incorporated into established biophysical models of the cardiac myocyte and were refined adjusting the sarcoplasmic reticulum Ca2+ leak current (ILeak ) until the consensus effects on APD and Ca2+ dynamics were replicated. Using factorial analysis, we then quantified the relative contribution of each channel to DOX and DOXL cardiotoxicity. KEY RESULTS: The factorial analysis identified the rapid delayed rectifying K+ current, the L-type Ca2+ current and the sarcoplasmic reticulum ILeak as the targets primarily responsible for the cardiotoxic effects on APD and Ca2+ dynamics. CONCLUSIONS AND IMPLICATIONS: This study provides insight into the mechanisms of DOX-induced cardiotoxicity and a framework for the development of future diagnostic and therapeutic strategies.


Subject(s)
Action Potentials/drug effects , Calcium/metabolism , Cardiotoxicity/physiopathology , Doxorubicin/adverse effects , Ion Channels/physiology , Models, Biological , Computer Simulation
8.
CPT Pharmacometrics Syst Pharmacol ; 6(8): 496-498, 2017 08.
Article in English | MEDLINE | ID: mdl-28585415

ABSTRACT

With the increased interest in the application of quantitative systems pharmacology (QSP) models within medicine research and development, there is an increasing need to formalize model development and verification aspects. In February 2016, a workshop was held at Roche Pharma Research and Early Development to focus discussions on two critical methodological aspects of QSP model development: optimal structural granularity and parameter estimation. We here report in a perspective article a summary of presentations and discussions.


Subject(s)
Systems Biology/methods , Congresses as Topic , Drug Design , Drug Discovery/methods , Humans
9.
Ann Biomed Eng ; 44(1): 58-70, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26424476

ABSTRACT

Computational models of cardiac electromechanics (EM) are increasingly being applied to clinical problems, with patient-specific models being generated from high fidelity imaging and used to simulate patient physiology, pathophysiology and response to treatment. Current structured meshes are limited in their ability to fully represent the detailed anatomical data available from clinical images and capture complex and varied anatomy with limited geometric accuracy. In this paper, we review the state of the art in image-based personalization of cardiac anatomy for biophysically detailed, strongly coupled EM modeling, and present our own tools for the automatic building of anatomically and structurally accurate patient-specific models. Our method relies on using high resolution unstructured meshes for discretizing both physics, electrophysiology and mechanics, in combination with efficient, strongly scalable solvers necessary to deal with the computational load imposed by the large number of degrees of freedom of these meshes. These tools permit automated anatomical model generation and strongly coupled EM simulations at an unprecedented level of anatomical and biophysical detail.


Subject(s)
Heart/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging , Models, Cardiovascular , Precision Medicine/methods , Animals , Humans , Radiography
10.
J Physiol ; 593(6): 1509-21, 2015 03 15.
Article in English | MEDLINE | ID: mdl-25772299

ABSTRACT

KEY POINTS: Hypokalaemia is a risk factor for development of ventricular arrhythmias. In rat ventricular myocytes, low extracellular K(+) (corresponding to clinical moderate hypokalaemia) increased Ca(2+) wave probability, Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load and induced SR Ca(2+) leak. Low extracellular K(+) reduced Na(+),K(+)-ATPase (NKA) activity and hyperpolarized the resting membrane potential in ventricular myocytes. Both experimental data and modelling indicate that reduced NKA activity and subsequent Na(+) accumulation sensed by the Na(+), Ca(2+) exchanger (NCX) lead to increased Ca(2+) transient amplitude despite concomitant hyperpolarization of the resting membrane potential. Low extracellular K(+) induced Ca(2+) overload by lowering NKA α2 activity. Triggered ventricular arrhythmias in patients with hypokalaemia may therefore be attributed to reduced NCX forward mode activity linked to an effect on the NKA α2 isoform. ABSTRACT: Hypokalaemia is a risk factor for development of ventricular arrhythmias. The aim of this study was to determine the cellular mechanisms leading to triggering of arrhythmias in ventricular myocytes exposed to low Ko. Low Ko, corresponding to moderate hypokalaemia, increased Ca(2+) transient amplitude, sarcoplasmic reticulum (SR) Ca(2+) load, SR Ca(2+) leak and Ca(2+) wave probability in field stimulated rat ventricular myocytes. The mechanisms leading to Ca(2+) overload were examined. Low Ko reduced Na(+),K(+)-ATPase (NKA) currents, increased cytosolic Na(+) concentration and increased the Na(+) level sensed by the Na(+), Ca(2+) exchanger (NCX). Low Ko also hyperpolarized the resting membrane potential (RMP) without significant alterations in action potential duration. Experiments in voltage clamped and field stimulated ventricular myocytes, along with mathematical modelling, suggested that low Ko increases the Ca(2+) transient amplitude by reducing NKA activity despite hyperpolarization of the RMP. Selective inhibition of the NKA α2 isoform by low dose ouabain abolished the ability of low Ko to reduce NKA currents, to increase Na(+) levels sensed by NCX and to increase the Ca(2+) transient amplitude. We conclude that low Ko, within the range of moderate hypokalaemia, increases Ca(2+) levels in ventricular myocytes by reducing the pumping rate of the NKA α2 isoform with subsequent Na(+) accumulation sensed by the NCX. These data highlight reduced NKA α2 -mediated control of NCX activity as a possible mechanism underlying triggered ventricular arrhythmias in patients with hypokalaemia.


Subject(s)
Calcium Signaling , Heart Ventricles/metabolism , Hypokalemia/metabolism , Myocytes, Cardiac/metabolism , Potassium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Action Potentials , Animals , Cells, Cultured , Heart Ventricles/cytology , Male , Myocytes, Cardiac/physiology , Protein Subunits/metabolism , Rats , Rats, Wistar
11.
Am J Physiol Heart Circ Physiol ; 303(11): H1294-303, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23042948

ABSTRACT

Multiscale models of cardiac electromechanics are being increasingly focused on understanding how genetic variation and environment underpin multiple disease states. In this paper we review the current state of the art in both the development of specific models and the physiological insights they have produced. This growing research body includes the development of models for capturing the effects of changes in function in both single and multiple proteins in both specific expression systems and in vivo contexts. Finally, the potential for using this approach for ultimately predicting phenotypes from genetic sequence information is discussed.


Subject(s)
Computer Simulation , Electrophysiological Phenomena/physiology , Heart Diseases/genetics , Heart/physiology , Animals , Genotype , Heart Diseases/physiopathology , Humans , Mice , Models, Animal , Models, Genetic , Phenotype
12.
J Physiol ; 590(6): 1331-8, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22271869

ABSTRACT

The link between experimental data and biophysically based mathematical models is key to computational simulation meeting its potential to provide physiological insight. However, despite the importance of this link, scrutiny and analysis of the processes by which models are parameterised from data are currently lacking. While this situation is common to many areas of physiological modelling, to provide a concrete context, we use examples drawn from detailed models of cardiac electro-mechanics. Using this biophysically detailed cohort of models we highlight the specific issues of model parameterization and propose this process can be separated into three stages: observation, fitting and validation. Finally, future research challenges and directions in this area are discussed.


Subject(s)
Heart/physiology , Models, Biological , Animals , Computer Simulation , Humans , Reproducibility of Results
13.
Int J Numer Method Biomed Eng ; 28(8): 890-903, 2012 Aug.
Article in English | MEDLINE | ID: mdl-25099569

ABSTRACT

A recent verification study compared 11 large-scale cardiac electrophysiology solvers on an unambiguously defined common problem. An unexpected amount of variation was observed between the codes, including significant error in conduction velocity in the majority of the codes at certain spatial resolutions. In particular, the results of the six finite element codes varied considerably despite each using the same order of interpolation. In this present study, we compare various algorithms for cardiac electrophysiological simulation, which allows us to fully explain the differences between the solvers. We identify the use of mass lumping as the fundamental cause of the largest variations, specifically the combination of the commonly used techniques of mass lumping and operator splitting, which results in a slightly different form of mass lumping to that supported by theory and leads to increased numerical error. Other variations are explained through the manner in which the ionic current is interpolated. We also investigate the effect of different forms of mass lumping in various types of simulation.


Subject(s)
Cardiac Electrophysiology/methods , Algorithms , Animals , Computer Simulation , Electrophysiologic Techniques, Cardiac/methods , Finite Element Analysis , Heart Conduction System/physiology , Models, Cardiovascular , Rabbits
14.
Prog Biophys Mol Biol ; 107(1): 122-33, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21791225

ABSTRACT

Computational models of the heart at various scales and levels of complexity have been independently developed, parameterised and validated using a wide range of experimental data for over four decades. However, despite remarkable progress, the lack of coordinated efforts to compare and combine these computational models has limited their impact on the numerous open questions in cardiac physiology. To address this issue, a comprehensive dataset has previously been made available to the community that contains the cardiac anatomy and fibre orientations from magnetic resonance imaging as well as epicardial transmembrane potentials from optical mapping measured on a perfused ex-vivo porcine heart. This data was used to develop and customize four models of cardiac electrophysiology with different level of details, including a personalized fast conduction Purkinje system, a maximum a posteriori estimation of the 3D distribution of transmembrane potential, the personalization of a simplified reaction-diffusion model, and a detailed biophysical model with generic conduction parameters. This study proposes the integration of these four models into a single modelling and simulation pipeline, after analyzing their common features and discrepancies. The proposed integrated pipeline demonstrates an increase prediction power of depolarization isochrones in different pacing conditions.


Subject(s)
Electrophysiological Phenomena , Heart/physiology , Magnetic Resonance Imaging , Models, Biological , Animals , Biophysical Phenomena , Diffusion , Heart/anatomy & histology , In Vitro Techniques , Membrane Potentials , Pericardium/anatomy & histology , Pericardium/cytology , Pericardium/physiology , Purkinje Fibers/anatomy & histology , Purkinje Fibers/cytology , Purkinje Fibers/physiology , Reproducibility of Results , Swine , Systems Integration , Time Factors
15.
Biophys J ; 100(2): 322-31, 2011 Jan 19.
Article in English | MEDLINE | ID: mdl-21244828

ABSTRACT

We describe a simulation study of Ca²(+) dynamics in mice with cardiomyocyte-specific conditional excision of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) gene, using an experimental data-driven biophysically-based modeling framework. Previously, we reported a moderately impaired heart function measured in mice at 4 weeks after SERCA2 gene deletion (knockout (KO)), along with a >95% reduction in the level of SERCA2 protein. We also reported enhanced Ca²(+) flux through the L-type Ca²(+) channels and the Na(+)/Ca²(+) exchanger in ventricular myocytes isolated from these mice, compared to the control Serca2(flox/flox) mice (flox-flox (FF)). In the current study, a mathematical model-based analysis was applied to enable further quantitative investigation into changes in the Ca²(+) handling mechanisms in these KO cardiomyocytes. Model parameterization based on a wide range of experimental measurements showed a 67% reduction in SERCA activity and an over threefold increase in the activity of the Na(+)/Ca²(+) exchanger. The FF and KO models were then validated against experimentally measured [Ca²(+)](i) transients and experimentally estimated sarco(endo)plasmic reticulum (SR) function. Simulation results were in quantitative agreement with experimental measurements, confirming that sustained [Ca²(+)](i) transients could be maintained in the KO cardiomyocytes despite severely impaired SERCA function. In silico analysis shows that diastolic [Ca²(+)](i) rises sharply with progressive reductions in SERCA activity at physiologically relevant pacing frequencies. Furthermore, an analysis of the roles of the compensatory mechanisms revealed that the major combined effect of the compensatory mechanisms is to lower diastolic [Ca²(+)](i). Finally, by using a comprehensive sensitivity analysis of the role of all cellular calcium handling mechanisms, we show that the combination of upregulation of the Na(+)/Ca²(+) exchanger and increased L-type Ca²(+) current is the most effective means to maintain diastolic and systolic calcium levels after loss of SERCA function.


Subject(s)
Calcium Channels, L-Type/metabolism , Calcium/metabolism , Models, Cardiovascular , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sodium-Calcium Exchanger/metabolism , Animals , Calcium-Transporting ATPases/genetics , Calcium-Transporting ATPases/metabolism , Cardiac Electrophysiology/methods , Gene Deletion , Heart Ventricles/cytology , Mice , Mice, Knockout , Myocardial Contraction/physiology , Myocardium/metabolism , Sarcoplasmic Reticulum/metabolism , Sodium-Calcium Exchanger/genetics
16.
Prog Biophys Mol Biol ; 104(1-3): 77-88, 2011 Jan.
Article in English | MEDLINE | ID: mdl-19917304

ABSTRACT

We outline and review the mathematical framework for representing mechanical deformation and contraction of the cardiac ventricles, and how this behaviour integrates with other processes crucial for understanding and modelling heart function. Building on general conservation principles of space, mass and momentum, we introduce an arbitrary Eulerian-Lagrangian framework governing the behaviour of both fluid and solid components. Exploiting the natural alignment of cardiac mechanical properties with the tissue microstructure, finite deformation measures and myocardial constitutive relations are referred to embedded structural axes. Coupling approaches for solving this large deformation mechanics framework with three dimensional fluid flow, coronary hemodynamics and electrical activation are described. We also discuss the potential of cardiac mechanics modelling for clinical applications.


Subject(s)
Models, Cardiovascular , Myocardial Contraction/physiology , Ventricular Function/physiology , Biomechanical Phenomena , Coronary Circulation/physiology , Coronary Vessels/physiology , Forecasting , Hemodynamics/physiology , Humans
17.
Am J Physiol Heart Circ Physiol ; 299(4): H1045-63, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20656884

ABSTRACT

Mathematical modeling of Ca(2+) dynamics in the heart has the potential to provide an integrated understanding of Ca(2+)-handling mechanisms. However, many previous published models used heterogeneous experimental data sources from a variety of animals and temperatures to characterize model parameters and motivate model equations. This methodology limits the direct comparison of these models with any particular experimental data set. To directly address this issue, in this study, we present a biophysically based model of Ca(2+) dynamics directly fitted to experimental data collected in left ventricular myocytes isolated from the C57BL/6 mouse, the most commonly used genetic background for genetically modified mice in studies of heart diseases. This Ca(2+) dynamics model was then integrated into an existing mouse cardiac electrophysiology model, which was reparameterized using experimental data recorded at consistent and physiological temperatures. The model was validated against the experimentally observed frequency response of Ca(2+) dynamics, action potential shape, dependence of action potential duration on cycle length, and electrical restitution. Using this framework, the implications of cardiac Na(+)/Ca(2+) exchanger (NCX) overexpression in transgenic mice were investigated. These simulations showed that heterozygous overexpression of the canine cardiac NCX increases intracellular Ca(2+) concentration transient magnitude and sarcoplasmic reticulum Ca(2+) loading, in agreement with experimental observations, whereas acute overexpression of the murine cardiac NCX results in a significant loss of Ca(2+) from the cell and, hence, depressed sarcoplasmic reticulum Ca(2+) load and intracellular Ca(2+) concentration transient magnitude. From this analysis, we conclude that these differences are primarily due to the presence of allosteric regulation in the canine cardiac NCX, which has not been observed experimentally in the wild-type mouse heart.


Subject(s)
Biophysical Phenomena/physiology , Heart Ventricles/metabolism , Models, Theoretical , Myocytes, Cardiac/metabolism , Sodium-Calcium Exchanger/metabolism , Action Potentials/physiology , Animals , Calcium/metabolism , Dogs , Heart Ventricles/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Myocytes, Cardiac/cytology , Patch-Clamp Techniques , Protein Isoforms/genetics , Protein Isoforms/metabolism , Reproducibility of Results , Sarcoplasmic Reticulum/metabolism , Sodium-Calcium Exchanger/genetics
18.
Exp Physiol ; 94(5): 529-40, 2009 May.
Article in English | MEDLINE | ID: mdl-19218357

ABSTRACT

Tension-dependent binding of Ca(2+) to troponin C in the cardiac myocyte has been shown to play an important role in the regulation of Ca(2+) and the activation of tension development. The significance of this regulatory mechanism is quantified experimentally by the quantity of Ca(2+) released following a rapid change in the muscle length. Using a computational, coupled, electromechanics cell model, we have confirmed that the tension dependence of Ca(2+) binding to troponin C, rather than cross-bridge kinetics or the rate of Ca(2+) uptake by the sarcoplasmic reticulum, determines the quantity of Ca(2+) released following a length step. This cell model has been successfully applied in a continuum model of the papillary muscle to analyse experimental data, suggesting the tension-dependent binding of Ca(2+) to troponin C as the likely pathway through which the effects of localized impaired tension generation alter the Ca(2+) transient. These experimental results are qualitatively reproduced using a three-dimensional coupled electromechanics model. Furthermore, the model predicts that changes in the Ca(2+) transient in the viable myocardium surrounding the impaired region are amplified in the absence of tension-dependent binding of Ca(2+) to troponin C.


Subject(s)
Heart/physiology , Models, Cardiovascular , Animals , Calcium Signaling , Electrophysiological Phenomena , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Papillary Muscles/physiology , Rats , Sarcoplasmic Reticulum/metabolism , Troponin C/metabolism
19.
Exp Physiol ; 94(5): 486-95, 2009 May.
Article in English | MEDLINE | ID: mdl-19139063

ABSTRACT

Computational models of cardiac electrophysiology are exemplar demonstrations of the integration of multiple data sets into a consistent biophysical framework. These models encapsulate physiological understanding to provide quantitative predictions of function. The combination or extension of existing models within a common framework allows integrative phenomena in larger systems to be investigated. This methodology is now routinely applied, as demonstrated by the increasing number of studies which use or extend previously developed models. In this study, we present a meta-analysis of this model re-use for two leading models of cardiac electrophysiology in the form of parameter inheritance trees, a sensitivity analysis and a comparison of the functional significance of the sodium potassium pump for defining restitution curves. These results indicate that even though the models aim to represent the same physiological system, both the sources of parameter values and the function of equivalent components are significantly different.


Subject(s)
Heart/physiology , Models, Cardiovascular , Electrophysiological Phenomena , Humans , Models, Statistical , Myocytes, Cardiac/physiology , Sodium-Potassium-Exchanging ATPase/physiology
20.
Prog Biophys Mol Biol ; 97(2-3): 348-66, 2008.
Article in English | MEDLINE | ID: mdl-18384845

ABSTRACT

In this brief review, we have focussed largely on the well-established, but essentially phenomenological, linear relationship between the energy expenditure of the heart (commonly assessed as the oxygen consumed per beat, oxygen consumption (VO2)) and the pressure-volume-area (PVA, the sum of pressure-volume work and a specified 'potential energy' term). We raise concerns regarding the propriety of ignoring work done during 'passive' ventricular enlargement during diastole as well as the work done against series elasticity during systole. We question the common assumption that the rate of basal metabolism is independent of ventricular volume, given the equally well-established Feng- or stretch-effect. Admittedly, each of these issues is more of conceptual than of quantitative import. We point out that the linearity of the enthalpy-PVA relation is now so well established that observed deviations from linearity are often ignored. Given that a one-dimensional equivalent of the linear VO2-PVA relation exists in papillary muscles, it seems clear that the phenomenon arises at the cellular level, rather than being a property of the intact heart. This leads us to discussion of the classes of crossbridge models that can be applied to the study of cardiac energetics. An admittedly superficial examination of the historical role played by Hooke's Law in theories of muscle contraction foreshadows deeper consideration of the thermodynamic constraints that must, in our opinion, guide the development of any mathematical model. We conclude that a satisfying understanding of the origin of the enthalpy-PVA relation awaits the development of such a model.


Subject(s)
Heart/physiology , Models, Cardiovascular , Myocardial Contraction/physiology , Myocardium/metabolism , Oxygen Consumption/physiology , Animals , Diastole/physiology , Heart Rate/physiology , Humans , Stroke Volume , Systole/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...