Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vertebr Paleontol ; 42(2): e2162909, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-37559798

ABSTRACT

Isolated teeth belonging to the genus Ptychodus Agassiz, 1834 (Chondrichthyes; Elasmobranchii) from the Upper Cretaceous of the Ryazan and Moscow Oblast regions (European Russia) are described and discussed in detail herein. The taxonomic composition of the Ptychodus assemblage from the Ryazan region is very diverse including the first records of the cuspidate species P. altior and P. anonymus, which thus is largely consistent with those from other contemporaneous European localities. Ptychodus ubiquitously inhabited epicontinental seas of Europe during most of the Cretaceous with the most diverse assemblages coming from southern England, northern Italy, Belgium, and European Russia. Additionally, the material documented here from the Cenomanian of Varavinsky ravine area (Moscow Oblast) represents the northernmost occurrence of Ptychodus hitherto reported from Europe. It is evident that the Late Cretaceous shallow seas of the Russian platform represented a crucial pathway for the dispersal of Ptychodus from the European peri-Tethys to the eastern margins of the Neo-Tethyan Ocean. The Albian-Campanian records of Ptychodus from Europe indicate that its dominance in the peri-Tethys persisted for most of its evolutionary history. A local temperature drop across most of the European shallow seas probably contributed to the narrowing of its geographic range in the peri-Tethyan seas towards the end of the Mesozoic Era. The fossil remains of Ptychodus documented herein are accordingly of utmost importance for better understanding the taxonomic composition of Russian fossil ichthyofaunas and also inform about the dispersal of Ptychodus towards western and eastern peri-Tethyan seas during the Late Cretaceous.

2.
PeerJ ; 10: e13652, 2022.
Article in English | MEDLINE | ID: mdl-35811823

ABSTRACT

Excrement-shaped ferruginous masses have been recovered from the Miocene of Turów mine in south-western Poland. These siderite masses have been the subject of much controversy, having been interpreted either as being coprolites, cololithes or pseudofossils created by mechanical deformation of plastic sediment. Here we present the results of mineralogical, geochemical, petrographic and microtomographical analyses. Our data indicate that these masses consist of siderite and iron oxide rather than phosphate, and rarely contain recognizable food residues, which may suggest abiotic origins of these structures. On the other hand, evidence in support of a fecal origin include: (i) the presence of two distinct morphotypes differing in size and shape, (ii) the presence of rare hair-like structures or coalified inclusions and (iii) the presence of rare fine striations on the surface. Importantly, comparative actualistic study of recent vertebrate feces shows overall resemblance of the first morphotype (sausage-shaped with rare coalified debris) to excrements of testudinoid turtles (Testudinoidea), whose shell fragment was found in the investigated locality. The second morphotype (rounded to oval-shaped with hair-like structures), in turn, is similar to the feces of some snakes (Serpentes), the remains of which were noted in the Miocene of the neighborhood areas. Other potential producers (such as lizards and crocodiles) and even abiotic origins cannot be fully excluded but are less likely.


Subject(s)
Fossils , Lizards , Animals , Poland , Lizards/anatomy & histology , Snakes
3.
Sci Rep ; 10(1): 20545, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239675

ABSTRACT

A rich assemblage of various types of bromalites from the lower Carnian "Konservat-Lagerstätte" from the Reingraben Shales in Polzberg (Northern Calcareous Alps, Lower Austria) is described for the first time in detail. They comprise large regurgitalites consisting of numerous entire shells of ammonoid Austrotrachyceras or their fragments and rare teuthid arm hooks, and buccal cartilage of Phragmoteuthis. Small coprolites composed mainly of fish remains were also found. The size, shape and co-occurrence with vertebrate skeletal remains imply that regurgitalites were likely produced by large durophagous fish (most likely by cartilaginous fish Acrodus). Coprolites, in turn, were likely produced by medium-sized piscivorous actinopterygians. Our findings are consistent with other lines of evidence suggesting that durophagous predation has been intense during the Triassic and that the so-called Mesozoic marine revolution has already started in the early Mesozoic.

5.
PLoS One ; 8(3): e58528, 2013.
Article in English | MEDLINE | ID: mdl-23505530

ABSTRACT

Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces.


Subject(s)
Animal Shells/anatomy & histology , Artifacts , Fossils , Predatory Behavior , Animals , Ecosystem
6.
PLoS One ; 7(11): e49798, 2012.
Article in English | MEDLINE | ID: mdl-23185442

ABSTRACT

Echinoderms have long been considered to be one of the animal phyla that is strictly marine. However, there is growing evidence that some recent species may live in either brackish or hypersaline environments. Surprisingly, discoveries of fossil echinoderms in non-(open)marine paleoenvironments are lacking. In Wojkowice Quarry (Southern Poland), sediments of lowermost part of the Middle Triassic are exposed. In limestone layer with cellular structures and pseudomorphs after gypsum, two dense accumulations of articulated ophiuroids (Aspiduriella similis (Eck)) were documented. The sediments with ophiuroids were formed in environment of increased salinity waters as suggested by paleontological, sedimentological, petrographical and geochemical data. Discovery of Triassic hypersaline ophiuroids invalidates the paleontological assumption that fossil echinoderms are indicators of fully marine conditions. Thus caution needs to be taken when using fossil echinoderms in paleoenvironmental reconstructions.


Subject(s)
Echinodermata , Paleontology , Salinity , Animals , Ecosystem , Fossils , Geologic Sediments , Poland
SELECTION OF CITATIONS
SEARCH DETAIL
...