Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-21530674

ABSTRACT

Sarcoplasmic calcium binding protein (SCP) is an invertebrate EF-hand calcium buffering protein that has been proposed to fulfill a similar function in muscle relaxation as vertebrate parvalbumin. We have identified three SCP variants in the freshwater crayfish Procambarus clarkii. The variants (pcSCP1a, pcSCP1b, and pcSCP1c) differ across a 37 amino acid region that lies mainly between the second and third EF-hand calcium binding domains. We evaluated tissue distribution and response of the variants to cold exposure, a stress known to affect expression of parvalbumin. Expression patterns of the variants were not different and therefore do not provide a functional rationale for the polymorphism of pcSCP1. Compared to hepatopancreas, expression of pcSCP1 variants was 100,000-fold greater in axial abdominal muscle and 10-fold greater in cardiac muscle. Expression was 10-100 greater in fast-twitch deep flexor and extensor muscles compared to slow-twitch superficial flexor and extensors. In axial muscle, no significant changes of pcSCP1, calmodulin (CaM), or sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA) expression were measured after one week of 4°C exposure. In contrast, large decreases of pcSCP1 were measured in cardiac muscle, with no changes in CaM or SERCA. Knockdown of pcSCP1 by dsRNA led to reduced muscle activity and decreased expression of SERCA. In summary, the pattern of pcSCP1 tissue expression is similar to parvalbumin, supporting a role in muscle contraction. However, the response of pcSCP1 to cold exposure differs from parvalbumin, suggesting possible functional divergence between the two proteins.


Subject(s)
Astacoidea/metabolism , Calcium-Binding Proteins/metabolism , Calcium/metabolism , Protein Isoforms/metabolism , Sarcoplasmic Reticulum/metabolism , Amino Acid Sequence , Animals , Astacoidea/genetics , Calcium-Binding Proteins/genetics , Cold Temperature , Female , Male , Molecular Sequence Data , Polymorphism, Genetic , Protein Isoforms/genetics , RNA Interference , Sequence Alignment , Tissue Distribution
2.
Article in English | MEDLINE | ID: mdl-18407536

ABSTRACT

Eukaryotic elongation factor 1Bgamma (eEF1Bgamma) is a subunit of elongation factor 1 (EF1), which regulates the recruitment of amino acyl-tRNAs to the ribosome during protein synthesis in eukaryotes. In addition to structural roles within eEF1, eEF1Bgamma has properties which suggest sensory or regulatory activities. We have cloned eEF1Bgamma from axial abdominal muscle of freshwater crayfish, Procambarus clarkii. The predicted amino acid sequence has 66% identity to Locusta migratoria eEF1Bgamma and 65% identity to Artemia salina eEF1Bgamma. We measured eEF1Bgamma expression by real-time PCR, using the relative quantification method with 18s ribosomal RNA as an internal calibrator. eEF1Bgamma expression was lowest in gill, axial abdominal muscle, and hepatopancreas, and was highest in the antennal gland (5.7-fold above hepatopancreas) and cardiac muscle (7.8-fold above hepatopancreas). In axial abdominal muscle, eEF1Bgamma expression was 4.4-fold higher in premolt and 11.9 higher in postmolt compared to intermolt. In contrast, eEF1Bgamma was decreased or unchanged in epithelial tissues during pre- and postmolt. eEF1Bgamma expression in the hepatopancreas was 3.5-fold higher during intermolt compared to premolt and was unchanged in gill and antennal gland. No significant differences in eEF1Bgamma were found after 1 week of acclimation to 4 degrees C. These results show that eEF1Bgamma is regulated at the mRNA level with tissue-specific differences in expression patterns.


Subject(s)
Acclimatization , Astacoidea/genetics , Cold Temperature , Peptide Elongation Factor 1/genetics , Amino Acid Sequence , Animals , Astacoidea/growth & development , Astacoidea/metabolism , Base Sequence , Cloning, Molecular , Life Cycle Stages/genetics , Molecular Sequence Data , Peptide Elongation Factor 1/metabolism , Phylogeny , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Messenger/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...