Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 406(1): 201-11, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24253407

ABSTRACT

A major challenge regarding the characterization of multilayer films is to perform high-resolution molecular depth profiling of, in particular, organic materials. This experimental work compares the performance of C60(+) and Ar1700(+) for the depth profiling of model multilayer organic films. In particular, the conditions under which the original interface widths (depth resolution) were preserved were investigated as a function of the sputtering energy. The multilayer samples consisted of three thin δ-layers (~8 nm) of the amino acid tyrosine embedded between four thicker layers (~93 nm) of the amino acid phenylalanine, all evaporated on to a silicon substrate under high vacuum. When C60(+) was used for sputtering, the interface quality degraded with depth through an increase of the apparent width and a decay of the signal intensity. Due to the continuous sputtering yield decline with increasing the C60(+) dose, the second and third δ-layers were shifted with respect to the first one; this deterioration was more pronounced at 10 keV, when the third δ-layer, and a fortiori the silicon substrate, could not be reached even after prolonged sputtering. When large argon clusters, Ar1700(+), were used for sputtering, a stable molecular signal and constant sputtering yield were achieved throughout the erosion process. The depth resolution parameters calculated for all δ-layers were very similar irrespective of the impact energy. The experimental interface widths of approximately 10 nm were barely larger than the theoretical thickness of 8 nm for the evaporated δ-layers.


Subject(s)
Argon/chemistry , Fullerenes/chemistry , Phenylalanine/chemistry , Tyrosine/chemistry , Silicon/chemistry , Surface Properties , Thermodynamics , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...