Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 552: 215982, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36309209

ABSTRACT

DNA methyltransferase (DNMT) inhibitors are used for treatment of certain hematological malignancies and exert anti-cancer activity through diverse mechanisms, including reexpression of tumor suppressor genes and anti-viral responses triggered by expression of endogenous retroviruses. Despite advances in the pharmacokinetic properties of DNMT inhibitors, the efficacy of these drugs in solid cancers remains low. Here, we show in cell lines and clinical and experimental tumors across multiple cancer types that DNMT inhibition induces the expression of interleukin-1 (IL-1), a cytokine with proinflammatory and protumorigenic properties. Specifically, this tumor-intrinsic IL-1 expression modulates the chemokine landscape of tumors and leads to the recruitment of monocytic myeloid-derived suppressor cells to the tumor microenvironment, processes that can be blocked by IL-1 antagonists. Molecular analysis demonstrates complex patterns of IL-1 and interferon activation and crosstalk in response to DNMT inhibition, which depend on the integrity of IRF- and NF-κB-mediated antiviral pathways and may determine the outcome of DNMT-inhibitor treatment. Together, our results show that DNMT inhibitors may negatively affect the microenvironment of a large subset of tumors and suggest that co-treatment with IL-1 antagonists may be a favorable combination for these patients.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Tumor Microenvironment , Interleukin-1 , DNA (Cytosine-5-)-Methyltransferase 1 , DNA Modification Methylases , DNA , Cell Line, Tumor
2.
Molecules ; 27(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296411

ABSTRACT

BACKGROUND: The somatostatin receptors 1-5 are overexpressed on neuroendocrine neoplasms and, as such, represent a favorable target for molecular imaging. This study investigates the potential of [18F]AlF-NOTA-[1-Nal3]-Octreotide and compares it in vivo to DOTA- and NOTA-[1-Nal3]-Octreotide radiolabeled with gallium-68. METHODS: DOTA- and NOTA-NOC were radiolabeled with gallium-68 and NOTA-NOC with [18F]AlF. Biodistributions of the three radioligands were evaluated in AR42J xenografted mice at 1 h p.i and for [18F]AlF at 3 h p.i. Preclinical PET/CT was applied to confirm the general uptake pattern. RESULTS: Gallium-68 was incorporated into DOTA- and NOTA-NOC in yields and radiochemical purities greater than 96.5%. NOTA-NOC was radiolabeled with [18F]AlF in yields of 38 ± 8% and radiochemical purity above 99% after purification. The biodistribution in tumor-bearing mice showed a high uptake in tumors of 26.4 ± 10.8 %ID/g for [68Ga]Ga-DOTA-NOC and 25.7 ± 5.8 %ID/g for [68Ga]Ga-NOTA-NOC. Additionally, [18F]AlF-NOTA-NOC exhibited a tumor uptake of 37.3 ± 10.5 %ID/g for [18F]AlF-NOTA-NOC, which further increased to 42.1 ± 5.3 %ID/g at 3 h p.i. CONCLUSIONS: The high tumor uptake of all radioligands was observed. However, [18F]AlF-NOTA-NOC surpassed the other clinically well-established radiotracers in vivo, especially at 3 h p.i. The tumor-to-blood and -liver ratios increased significantly over three hours for [18F]AlF-NOTA-NOC, making it possible to detect liver metastases. Therefore, [18F]AlF demonstrates promise as a surrogate pseudo-radiometal to gallium-68.


Subject(s)
Gallium Radioisotopes , Neuroendocrine Tumors , Animals , Mice , Neuroendocrine Tumors/diagnostic imaging , Receptors, Somatostatin/metabolism , Positron Emission Tomography Computed Tomography/methods , Octreotide , Tissue Distribution , Positron-Emission Tomography/methods , Radiopharmaceuticals
3.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36096528

ABSTRACT

BACKGROUND: Immunosuppressive extracellular adenosine is generated by the enzymatic activity of CD73. In preclinical models, antibodies (Abs) targeting different epitopes on CD73 exert anticancer activity through distinct mechanisms such as inhibition of enzymatic activity, engagement of Fc receptors, and spatial redistribution of CD73. METHODS: Using controlled Fab arm exchange, we generated biparatopic bispecific antibodies (bsAbs) from parental anti-CD73 Abs with distinct anticancer activities. The resulting anticancer activity was evaluated using in vitro and in vivo models. RESULTS: We demonstrate that different anticancer activities can be combined in a biparatopic bsAb. Remarkably, the bsAb significantly improved the enzyme inhibitory activity compared with the parental Abs, which led to neutralization of adenosine-mediated T-cell suppression as demonstrated by proliferation and interferon gamma (IFN-γ) production and prolonged survival of tumor-bearing mice. Additionally, the bsAb caused more efficient internalization of cell surface CD73 and stimulated potent Fc-mediated engagement of human immune effector cells in vitro and in vivo. CONCLUSIONS: Our data collectively demonstrate that complementary anticancer mechanisms of action of distinct anti-CD73 Abs can be combined and enhanced in a biparatopic bsAb. The multiple mechanisms of action and superior activity compared with the monospecific parental Abs make the bsAb a promising candidate for therapeutic targeting of CD73 in cancer. This concept may greatly improve future Ab design.


Subject(s)
Antibodies, Bispecific , Neoplasms , Adenosine , Animals , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Epitopes , Humans , Mice
4.
Cancer Immunol Immunother ; 69(11): 2169-2178, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32648166

ABSTRACT

T-cell receptor (TCR)- and chimeric antigen receptor (CAR)-based adoptive cell transfer (ACT) has shown promising results in hematological malignancies, but remains immature in solid cancers. The challenges associated with identification of tumor-specific targets, the heterogenic antigen expression, limited T-cell trafficking to tumor sites and the hostile tumor microenvironment (TME), are all factors contributing to the limited efficacy of ACT therapies against solid tumors. Epigenetic priming of tumor cells and the microenvironment may be a way of overcoming these obstacles and improving the clinical efficacy of adoptive T-cell therapies in the future. Here, we review the current literature and suggest combining epigenetic modulators and ACT strategies as a way of augmenting the efficacy of TCR- and CAR-engineered T cells against solid tumors.


Subject(s)
Combined Modality Therapy/methods , Epigenesis, Genetic , Immunotherapy, Adoptive/methods , Neoplasms , T-Lymphocytes/transplantation , Animals , Antigens, Neoplasm/immunology , DNA Modification Methylases/antagonists & inhibitors , Epigenesis, Genetic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Humans , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Tumor Escape/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
5.
Front Oncol ; 10: 584024, 2020.
Article in English | MEDLINE | ID: mdl-33634013

ABSTRACT

Identification of novel tumor-specific targets is important for the future development of immunotherapeutic strategies using genetically engineered T cells or vaccines. In this study, we characterized the expression of VCX2, a member of the VCX/Y cancer/testis antigen family, in a large panel of normal tissues and tumors from multiple cancer types using immunohistochemical staining and RNA expression data. In normal tissues, VCX2 was detected in the germ cells of the testis at all stages of maturation but not in any somatic tissues. Among malignancies, VCX2 was only found in tumors of a small subset of melanoma patients and thus rarely expressed compared to other cancer/testis antigens such as GAGE and MAGE-A. The expression of VCX2 correlated with that of other VCX/Y genes. Importantly, we found that expression of VCX2 was inversely correlated with promoter methylation and could be activated by treatment with a DNA methyltransferase inhibitor in multiple breast cancer and melanoma cell lines and a breast cancer patient-derived xenograft. The effect could be further potentiated by combining the DNA methyltransferase inhibitor with a histone deacetylase inhibitor. Our results show that the expression of VCX2 can be epigenetically induced in cancer cells and therefore could be an attractive target for immunotherapy of cancer.

6.
Int J Mol Sci ; 17(6)2016 Jun 06.
Article in English | MEDLINE | ID: mdl-27275820

ABSTRACT

Genomic instability is a hallmark of human cancer and an enabling factor for the genetic alterations that drive cancer development. The processes involved in genomic instability resemble those of meiosis, where genetic material is interchanged between homologous chromosomes. In most types of human cancer, epigenetic changes, including hypomethylation of gene promoters, lead to the ectopic expression of a large number of proteins normally restricted to the germ cells of the testis. Due to the similarities between meiosis and genomic instability, it has been proposed that activation of meiotic programs may drive genomic instability in cancer cells. Some germ cell proteins with ectopic expression in cancer cells indeed seem to promote genomic instability, while others reduce polyploidy and maintain mitotic fidelity. Furthermore, oncogenic germ cell proteins may indirectly contribute to genomic instability through induction of replication stress, similar to classic oncogenes. Thus, current evidence suggests that testis germ cell proteins are implicated in cancer development by regulating genomic instability during tumorigenesis, and these proteins therefore represent promising targets for novel therapeutic strategies.


Subject(s)
Ectopic Gene Expression , Gene Expression Regulation, Neoplastic , Genomic Instability , Germ Cells/metabolism , Neoplasms/genetics , Testis/metabolism , Animals , Aurora Kinase C/metabolism , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Chromosomes/genetics , Chromosomes/metabolism , DNA Replication , Humans , Male , Meiosis/genetics , Neoplasms/metabolism , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Polyploidy , Protein Binding , Recombination, Genetic , Stress, Physiological , Synaptonemal Complex/metabolism
7.
RNA Biol ; 12(9): 985-97, 2015.
Article in English | MEDLINE | ID: mdl-26176322

ABSTRACT

Listeria monocytogenes is the causative agent of the foodborne disease listeriosis. During infection, L. monocytogenes produces an array of non-coding RNAs, including the multicopy sRNA LhrC. These five, nearly identical sRNAs are highly induced in response to cell envelope stress and target the virulence adhesin lapB at the post-transcriptional level. Here, we demonstrate that LhrC controls expression of additional genes encoding cell envelope-associated proteins with virulence function. Using transcriptomics and proteomics, we identified a set of genes affected by LhrC in response to cell envelope stress. Three targets were significantly down-regulated by LhrC at both the RNA and protein level: lmo2349, tcsA and oppA. All three genes encode membrane-associated proteins: A putative substrate binding protein of an amino acid ABC transporter (Lmo2349); the CD4+ T cell-stimulating antigen TcsA, and the oligopeptide binding protein OppA, of which the latter 2 are required for full virulence of L. monocytogenes. For OppA, we show that LhrC acts by direct base paring to the ribosome binding site of the oppA mRNA, leading to an impediment of its translation and a decreased mRNA level. The sRNA-mRNA interaction depends on 2 of 3 CU-rich regions in LhrC allowing binding of 2 oppA mRNAs to a single LhrC molecule. Finally, we found that LhrC contributes to infection in macrophage-like cells. These findings demonstrate a central role for LhrC in controlling the level of OppA and other virulence-associated cell envelope proteins in response to cell envelope stress.


Subject(s)
Bacterial Proteins/genetics , Carrier Proteins/genetics , Gene Dosage , Gene Expression Regulation, Bacterial , Lipoproteins/genetics , Listeria monocytogenes/genetics , RNA, Small Untranslated/genetics , Animals , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Carrier Proteins/metabolism , Gene Expression Profiling , Lipoproteins/metabolism , Listeria monocytogenes/metabolism , Macrophages/microbiology , Mice , Mutation , Nucleic Acid Conformation , Nucleotide Motifs , Operon , Proteome , Proteomics/methods , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/metabolism , Stress, Physiological/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...