Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 17(2)2017 02.
Article in English | MEDLINE | ID: mdl-27805765

ABSTRACT

The authors report on series of side-chain smectic liquid crystal elastomer (LCE) cell scaffolds based on star block-copolymers featuring 3-arm, 4-arm, and 6-arm central nodes. A particular focus of these studies is placed on the mechanical properties of these LCEs and their impact on cell response. The introduction of diverse central nodes allows to alter and custom-modify the mechanical properties of LCE scaffolds to values on the same order of magnitude of various tissues of interest. In addition, it is continued to vary the position of the LC pendant group. The central node and the position of cholesterol pendants in the backbone of ε-CL blocks (alpha and gamma series) affect the mechanical properties as well as cell proliferation and particularly cell alignment. Cell directionality tests are presented demonstrating that several LCE scaffolds show cell attachment, proliferation, narrow orientational dispersion of cells, and highly anisotropic cell growth on the as-synthesized LCE materials.


Subject(s)
Biocompatible Materials/chemistry , Elastomers/chemistry , Liquid Crystals/chemistry , Mechanical Phenomena , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Dermis/cytology , Elastomers/chemical synthesis , Elastomers/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Humans , Liquid Crystals/ultrastructure , Mice , Microscopy, Polarization , Myoblasts/cytology , Myoblasts/drug effects , Porosity , Scattering, Small Angle , Stress, Mechanical , Temperature , X-Ray Diffraction
2.
ACS Macro Lett ; 5(1): 4-9, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-35668595

ABSTRACT

3D biodegradable and highly regular foamlike cell scaffolds based on biocompatible side-chain liquid crystal elastomers have been prepared. Scaffolds with a primary porosity characterized by spatially interlaced, interconnected microchannels or an additional secondary porosity featuring interconnected microchannel networks define the novel elastomeric scaffolds. The macroscale morphology of the dual porosity 3D scaffold resembles vascular networks observed in tissue. 3D elastomer foams show four times higher cell proliferation capability compared to conventional porous templated films and within the channels guide spontaneous cell alignment enabling the possibility of tissue construct fabrication toward more clinically complex environments.

3.
Macromol Biosci ; 15(2): 200-14, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25303674

ABSTRACT

Here we report on the modular synthesis and characterization of biodegradable, controlled porous, liquid crystal elastomers (LCE) and their use as three-dimensional cell culture scaffolds. The elastomers were prepared by cross-linking of star block-co-polymers with pendant cholesterol units resulting in the formation of smectic-A LCEs as determined by polarized optical microscopy, DSC, and X-ray diffraction. Scanning electron microscopy revealed the porosity of the as-prepared biocompatible LCEs, making them suitable as 3D cell culture scaffolds. Biodegradability studies in physiological buffers at varying pH show that these scaffolds are intact for about 11 weeks after which degradation sets in at an exponential rate. Initial results from cell culture studies indicate that these smectic LCEs are compatible with growth, survival, and expansion of cultured neuroblastomas and myoblasts when grown on the LCEs for extended time periods (about a month). These preliminary cell studies focused on characterizing the elastomer-based scaffolds' biocompatibility and the successful 3D incorporation as well as growth of cells in 60 to 150-µm thick elastomer sheets.


Subject(s)
Biocompatible Materials/chemistry , Biodegradable Plastics/chemistry , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Elastomers/chemistry , Liquid Crystals/chemistry , Tissue Scaffolds/chemistry , Biotechnology/methods , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...