Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 145: 569-575, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28777968

ABSTRACT

This study demonstrates the addition of 14C-cholesterol to the human cell line H295R will in-situ form radiolabeled steroid hormones allowing for new mechanistic and metabolic insights. The aim of the present study was to in-situ radiolabel steroid hormones from cell line-incorporated 14C-cholesterol using the OECD guideline 456, H295R steroidogenesis in-vitro assay. Radiodetection of the steroid metabolites of the steroidogenic pathway allows for an improved understanding of the various enzymatic mechanisms involved without necessarily being dependent on quantification. Generated radiolabeled steroids were analyzed using HPLC hyphenated with a Flow Scintillation Analyzer (FSA). H295R cells were incubated with radiolabeled cholesterol and cell media were collected and prepared by solid phase extraction and analyzed with HPLC-FSA. For successful radiolabeling of the steroids in the steroidogenesis of H295R cells, radioactive cholesterol may potentially only need to be added just before the cells are incubated for 72h in well plates. Based on the obtained HPLC-FSA chromatograms, and confirmation of the observations by studies in the literature, a qualitative time profile for the production of steroid hormones was estimated. Multiple radiolabeled steroid hormones were identified by means of analytical standards and UV (ultraviolet) co-chromatography, though the elucidation of multiple metabolites remains unresolved. Although online radiodetection proved to suffer from suboptimal sensitivity, the concept of radiolabeling the steroidogenesis in H295R cells with 14C-cholesterol and detecting the radiolabeled steroid hormones online was proved and may assist in further toxicological studies.


Subject(s)
Adrenocortical Adenoma , Cell Line , Cell Line, Tumor , Cholesterol , Chromatography, High Pressure Liquid , Humans , Online Systems , Solid Phase Extraction , Steroids
2.
Int J Toxicol ; 34(6): 534-42, 2015.
Article in English | MEDLINE | ID: mdl-26268768

ABSTRACT

Mixture effects of 3 model endocrine disruptors, prochloraz, ketoconazole, and genistein, on steroidogenesis were tested in the adrenocortical H295R cell line. Seven key steroid hormones (pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, testosterone, estrone, and 17ß-estradiol) were analyzed using gas chromatography and tandem mass spectrometry (GC-MS/MS) to investigate the effects throughout the steroidogenic pathway. Current modeling approaches often rely on models assuming compounds acting independently and that the individual effects in some way can be summarized to predict a mixture effect. In H295R cells with an intact steroidogenic pathway, such assumptions may not be feasible. The purpose of this study was therefore to evaluate whether effects of a mixture with differing modes of action followed or deviated from additivity (concentration addition) and whether the H295R cell line was suitable for evaluating mixture toxicity of endocrine disruptors with different modes of action. The compounds were chosen because they interfere with steroidogenesis in different ways. They all individually decrease the concentrations of the main sex steroids downstream but exert different effects upstream in the steroidogenic pathway. Throughout the study, we observed lowest observed effect concentrations of mixtures at levels 2 to 10 times higher than the predicted EC(50), strongly indicating antagonistic effects. The results demonstrate that chemical analysis combined with the H295R cell assay is a useful tool also for studying how mixtures of endocrine disruptors with differing modes of action interfere with the steroidogenic pathway and that existing models like concentration addition are insufficient in such cases. Furthermore, for end points where compounds exert opposite effects, no relevant models are available.


Subject(s)
Endocrine Disruptors/toxicity , Genistein/toxicity , Imidazoles/toxicity , Ketoconazole/toxicity , Steroids/biosynthesis , Cell Line, Tumor , Cell Survival/drug effects , Drug Interactions , Humans
3.
Toxicol In Vitro ; 26(2): 343-50, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22198065

ABSTRACT

The effects of three model endocrine disruptors, prochloraz, ketoconazole and genistein on steroidogenesis were tested in the adrenocortical H295R cell line to demonstrate that a broader mechanistic understanding can be achieved in one assay by applying chemical analysis to the H295R assay. Seven key steroid hormones (pregnenolone, progesterone, dehydroepiandrosterone, androstenedione, testosterone, estrone and 17ß-estradiol) were analyzed using a novel and thoroughly validated GC-MS/MS method. In addition to the simultaneous quantification of 7 steroid hormones, the present method also negates the potential problems of cross-reactivity that can be encountered in some immunoassays. Although all 3 test compounds decrease the concentrations of the main sex steroids, the chemicals exerted different effects upstream in the pathway. Exposure to prochloraz resulted in increased hormone levels upstream of steroid 17 alpha-hydroxylase/17,20 lyase (P450c17) and decreases downstream. Ketoconazole inhibited the entire pathway, while exposure to genistein resulted in increased hormone levels upstream of 3-ß-hydroxysteroid dehydrogenase (3ß-HSD) and decreases downstream. The results demonstrate that chemical analysis combined with the H295R cell assay is an useful tool for studying the mechanisms by which endocrine disruptors interfere with the steroidogenic pathway.


Subject(s)
Endocrine Disruptors/pharmacology , Genistein/pharmacology , Gonadal Steroid Hormones/metabolism , Imidazoles/pharmacology , Ketoconazole/pharmacology , Steroids/metabolism , Biological Assay/methods , Cell Line, Tumor , Chromatography, Gas , Humans , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...