Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 24(10): 1762-1777, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37653247

ABSTRACT

Multivalent viral epitopes induce rapid, robust and T cell-independent humoral immune responses, but the biochemical basis for such potency remains incompletely understood. We take advantage of a set of liposomes of viral size engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme. Particulate Ag induces potent 'all-or-none' B cell responses that are density dependent but affinity independent. Unlike soluble Ag, particulate Ag induces signal amplification downstream of the B cell receptor by selectively evading LYN-dependent inhibitory pathways and maximally activates NF-κB in a manner that mimics T cell help. Such signaling induces MYC expression and enables even low doses of particulate Ag to trigger robust B cell proliferation in vivo in the absence of adjuvant. We uncover a molecular basis for highly sensitive B cell responses to viral Ag display that is independent of encapsulated nucleic acids and is not merely accounted for by avidity and B cell receptor cross-linking.


Subject(s)
Antigens , B-Lymphocytes , Receptors, Antigen, B-Cell/metabolism , Lymphocyte Activation , Epitopes/metabolism
2.
Immunol Rev ; 307(1): 116-133, 2022 05.
Article in English | MEDLINE | ID: mdl-35174510

ABSTRACT

Random VDJ recombination early in T and B cell development enables the adaptive immune system to recognize a vast array of evolving pathogens via antigen receptors. However, the potential of such randomly generated TCRs and BCRs to recognize and respond to self-antigens requires layers of tolerance mechanisms to mitigate the risk of life-threatening autoimmunity. Since they were originally cloned more than three decades ago, the NR4A family of nuclear hormone receptors have been implicated in many critical aspects of immune tolerance, including negative selection of thymocytes, peripheral T cell tolerance, regulatory T cells (Treg), and most recently in peripheral B cell tolerance. In this review, we discuss important insights from many laboratories as well as our own group into the function and mechanisms by which this small class of primary response genes promotes self-tolerance and immune homeostasis to balance the need for host defense against the inherent risks posed by the adaptive immune system.


Subject(s)
Immune Tolerance , Nuclear Receptor Subfamily 4, Group A, Member 1 , B-Lymphocytes , Humans , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Self Tolerance , T-Lymphocytes, Regulatory
3.
JCI Insight ; 6(17)2021 09 08.
Article in English | MEDLINE | ID: mdl-34343134

ABSTRACT

The NR4A family of orphan nuclear receptors (Nr4a1-3) plays redundant roles to establish and maintain Treg identity; deletion of multiple family members in the thymus results in Treg deficiency and a severe inflammatory disease. Consequently, it has been challenging to unmask redundant functions of the NR4A family in other immune cells. Here we use a competitive bone marrow chimera strategy, coupled with conditional genetic tools, to rescue Treg homeostasis and unmask such functions. Unexpectedly, chimeras harboring Nr4a1-/- Nr4a3-/- (double-knockout, DKO) bone marrow developed autoantibodies and a systemic inflammatory disease despite a replete Treg compartment of largely WT origin. This disease differs qualitatively from that seen with Treg deficiency and is B cell extrinsic. Negative selection of DKO thymocytes is profoundly impaired in a cell-intrinsic manner. Consistent with escape of self-reactive T cells into the periphery, DKO T cells with functional, phenotypic, and transcriptional features of anergy accumulated in chimeric mice. Nevertheless, we observed upregulation of genes encoding inflammatory mediators in anergic DKO T cells, and DKO T cells exhibited enhanced capacity for IL-2 production. These studies reveal cell-intrinsic roles for the NR4A family in both central and peripheral T cell tolerance and demonstrate that each is essential to preserve immune homeostasis.


Subject(s)
Autoimmunity , DNA/genetics , Homeostasis/immunology , Immune Tolerance/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Animals , Cell Differentiation , DNA Mutational Analysis , Mice , Models, Animal , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , T-Lymphocytes, Regulatory/immunology
4.
Microbiol Spectr ; 4(1)2016 Feb.
Article in English | MEDLINE | ID: mdl-26999391

ABSTRACT

Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacterial Infections/prevention & control , Bacterial Vaccines , Urinary Tract Infections/prevention & control , Animals , Bacterial Infections/drug therapy , Humans , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology
5.
Infect Immun ; 81(12): 4525-33, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24082071

ABSTRACT

Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for a D-serine-deaminase (DsdA). As D-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising that the D-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that D-serine-deaminase or the ability to respond to or to metabolize D-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high intracellular D-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high D-serine concentrations; however, its D-serine metabolism has not been described. The activity of the D-serine-deaminase was verified by analyzing the formation of pyruvate from D-serine in different strains with and without D-serine-deaminase. Cocultivation experiments were performed to show that D-serine-deaminase confers a growth advantage to S. saprophyticus in the presence of D-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the ΔdsdA mutant during urinary tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed that the surface-associated lipase Ssp is upregulated in the presence of D-serine. In addition, we show that S. saprophyticus is able to use D-serine as the sole carbon source, but interestingly, D-serine had a negative effect on growth when glucose was also present. Taken together, D-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor is upregulated in the presence of D-serine and a ΔdsdA mutant was attenuated in virulence murine model of urinary tract infection.


Subject(s)
Hydro-Lyases/metabolism , Serine/metabolism , Staphylococcal Infections/metabolism , Staphylococcus saprophyticus/enzymology , Urinary Tract Infections/metabolism , Ammonia/metabolism , Animals , Female , Mice , Mice, Inbred C3H , Pyruvic Acid/metabolism , Staphylococcal Infections/microbiology , Staphylococcus saprophyticus/genetics , Staphylococcus saprophyticus/pathogenicity , Urinary Tract Infections/microbiology , Virulence Factors/genetics , Virulence Factors/metabolism
6.
J Bacteriol ; 195(19): 4484-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23913319

ABSTRACT

Enterococci commonly cause hospital-acquired infections, such as infective endocarditis and catheter-associated urinary tract infections. In animal models of these infections, a long hairlike extracellular protein fiber known as the endocarditis- and biofilm-associated (Ebp) pilus is an important virulence factor for Enterococcus faecalis. For Ebp and other sortase-assembled pili, the pilus-associated sortases are essential for fiber formation as they create covalent isopeptide bonds between the sortase recognition motif and the pilin-like motif of the pilus subunits. However, the molecular requirements governing the incorporation of the three pilus subunits (EbpA, EbpB, and EbpC) have not been investigated in E. faecalis. Here, we show that a Lys residue within the pilin-like motif of the EbpC subunit was necessary for EbpC polymerization. However, incorporation of EbpA into the pilus fiber only required its sortase recognition motif (LPXTG), while incorporation of EbpB only required its pilin-like motif. Only the sortase recognition motif would be required for incorporation of the pilus tip subunit, while incorporation of the base subunit would only require the pilin recognition motif. Thus, these data support a model with EbpA at the tip and EbpB at the base of an EbpC polymer. In addition, the housekeeping sortase, SrtA, was found to process EbpB and its predicted catalytic Cys residue was required for efficient cell wall anchoring of mature Ebp pili. Thus, we have defined molecular interactions involved in fiber polymerization, minor subunit organization, and pilus subcellular compartmentalization in the E. faecalis Ebp pilus system. These studies advance our understanding of unique molecular mechanisms of sortase-assembled pilus biogenesis.


Subject(s)
Aminoacyltransferases/metabolism , Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Enterococcus faecalis/metabolism , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/physiology , Aminoacyltransferases/genetics , Bacterial Proteins/genetics , Biofilms/growth & development , Cell Wall , Cysteine Endopeptidases/genetics , Enterococcus faecalis/genetics , Enterococcus faecalis/physiology , Fimbriae Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Mutation
7.
Infect Immun ; 81(5): 1606-17, 2013 May.
Article in English | MEDLINE | ID: mdl-23460515

ABSTRACT

While many virulence factors promoting Streptococcus pyogenes invasive disease have been described, specific streptococcal factors and host properties influencing asymptomatic mucosal carriage remain uncertain. To address the need for a refined model of prolonged S. pyogenes asymptomatic mucosal colonization, we have adapted a preestrogenized murine vaginal colonization model for S. pyogenes. In this model, derivatives of strains HSC5, SF370, JRS4, NZ131, and MEW123 established a reproducible, asymptomatic colonization of the vaginal mucosa over a period of typically 3 to 4 weeks' duration at a relatively high colonization efficiency. Prior treatment with estradiol prolonged streptococcal colonization and was associated with reduced inflammation in the colonized vaginal epithelium as well as a decreased leukocyte presence in vaginal fluid compared to the levels of inflammation and leukocyte presence in non-estradiol-treated control mice. The utility of our model for investigating S. pyogenes factors contributing to mucosal carriage was verified, as a mutant with a mutation in the transcriptional regulator catabolite control protein A (CcpA) demonstrated significant impairment in vaginal colonization. An assessment of in vivo transcriptional activity in the CcpA(-) strain for several known CcpA-regulated genes identified significantly elevated transcription of lactate oxidase (lctO) correlating with excessive generation of hydrogen peroxide to self-lethal levels. Deletion of lctO did not impair colonization, but deletion of lctO in a CcpA(-) strain prolonged carriage, exceeding even that of the wild-type strain. Thus, while LctO is not essential for vaginal colonization, its dysregulation is deleterious, highlighting the critical role of CcpA in promoting mucosal colonization. The vaginal colonization model should prove effective for future analyses of S. pyogenes mucosal colonization.


Subject(s)
Asymptomatic Infections , Mucous Membrane/microbiology , Streptococcus pyogenes , Vagina/microbiology , Animals , Disease Models, Animal , Estradiol/pharmacology , Estrogens/pharmacology , Female , Leukocytes/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Streptococcus pyogenes/drug effects , Transcription Factors/deficiency , Transcription Factors/physiology , Vagina/cytology
8.
mBio ; 3(4): e00177-12, 2012.
Article in English | MEDLINE | ID: mdl-22829678

ABSTRACT

UNLABELLED: Though the bacterial opportunist Enterococcus faecalis causes a myriad of hospital-acquired infections (HAIs), including catheter-associated urinary tract infections (CAUTIs), little is known about the virulence mechanisms that it employs. However, the endocarditis- and biofilm-associated pilus (Ebp), a member of the sortase-assembled pilus family, was shown to play a role in a mouse model of E. faecalis ascending UTI. The Ebp pilus comprises the major EbpC shaft subunit and the EbpA and EbpB minor subunits. We investigated the biogenesis and function of Ebp pili in an experimental model of CAUTI using a panel of chromosomal pilin deletion mutants. A nonpiliated pilus knockout mutant (EbpABC(-) strain) was severely attenuated compared to its isogenic parent OG1RF in experimental CAUTI. In contrast, a nonpiliated ebpC deletion mutant (EbpC(-) strain) behaved similarly to OG1RF in vivo because it expressed EbpA and EbpB. Deletion of the minor pilin gene ebpA or ebpB perturbed pilus biogenesis and led to defects in experimental CAUTI. We discovered that the function of Ebp pili in vivo depended on a predicted metal ion-dependent adhesion site (MIDAS) motif in EbpA's von Willebrand factor A domain, a common protein domain among the tip subunits of sortase-assembled pili. Thus, this study identified the Ebp pilus as a virulence factor in E. faecalis CAUTI and also defined the molecular basis of this function, critical knowledge for the rational development of targeted therapeutics. IMPORTANCE: Catheter-associated urinary tract infections (CAUTIs), one of the most common hospital-acquired infections (HAIs), present considerable treatment challenges for physicians. Inherently resistant to several classes of antibiotics and with a propensity to acquire vancomycin resistance, enterococci are particularly worrisome etiologic agents of CAUTI. A detailed understanding of the molecular basis of Enterococcus faecalis pathogenesis in CAUTI is necessary for the development of preventative and therapeutic strategies. Our results elucidated the importance of the E. faecalis Ebp pilus and its subunits for enterococcal virulence in a mouse model of CAUTI. We further showed that the metal ion-dependent adhesion site (MIDAS) motif in EbpA is necessary for Ebp function in vivo. As this motif occurs in other sortase-assembled pili, our results have implications for the molecular basis of virulence not only in E. faecalis CAUTI but also in additional infections caused by enterococci and other Gram-positive pathogens.


Subject(s)
Bacterial Adhesion , Catheter-Related Infections/microbiology , Enterococcus faecalis/physiology , Fimbriae Proteins/chemistry , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Metals/metabolism , Urinary Tract Infections/microbiology , Amino Acid Motifs , Animals , Catheters/adverse effects , Enterococcus faecalis/chemistry , Enterococcus faecalis/genetics , Female , Fimbriae Proteins/genetics , Fimbriae, Bacterial/chemistry , Fimbriae, Bacterial/genetics , Humans , Mice , Mice, Inbred C57BL , Urinary Tract Infections/etiology , Virulence Factors/chemistry , Virulence Factors/genetics , Virulence Factors/metabolism
9.
Proteomics ; 11(19): 3935-41, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21800426

ABSTRACT

Enterococcus faecalis is a gram-positive bacterium that is part of the indigenous microbiotica of humans and animals as well as an opportunistic pathogen. In this study, we have fractionated the membrane proteome of E. faecalis and identified many of its constituents by mass spectrometry. We present blue native-/SDS-PAGE reference maps that contain 102 proteins. These proteins are important for cellular homeostasis, virulence, and antibiotic intervention. Intriguingly, many proteins with no known function were also identified, indicating that there are substantial gaps in the knowledge of this organism's biology. On a more limited scale, we also provide insight into the composition of membrane protein complexes. This study is a first step toward elucidating the membrane proteome of E. faecalis, which is critical for a better understanding of how this bacterium interacts with a host and with the extracellular milieu.


Subject(s)
Bacterial Proteins/analysis , Cell Membrane/chemistry , Enterococcus faecalis/chemistry , Proteome/analysis , Electrophoresis, Polyacrylamide Gel , Spectrometry, Mass, Electrospray Ionization
10.
Infect Immun ; 78(5): 1943-51, 2010 May.
Article in English | MEDLINE | ID: mdl-20176795

ABSTRACT

Staphylococcus saprophyticus, an obligate human pathogen, is the most common Gram-positive causative agent of urinary tract infection (UTI) in young, healthy women. Despite the clinical importance of S. saprophyticus, little is known about how it causes disease in the urinary tract or how the host responds to the infection. Here we established an in vivo model to study both host and bacterial factors contributing to S. saprophyticus UTI. Using this model, we show that S. saprophyticus preferentially infects C3H/HeN murine kidneys instead of the bladder, a trait observed for multiple clinical isolates. Bacterial persistence in the kidneys was observed in C3H/HeN mice but not in C57BL/6 mice, indicating that host factors strongly contribute to the ability of S. saprophyticus to cause UTI. Using C3H/HeN mice as a model, histologic and immunofluorescence analyses of infected tissues revealed that S. saprophyticus induced epithelial cell shedding in the bladder and an inflammatory response characterized by macrophage and neutrophil infiltration in the bladder and kidneys. The inflammatory response correlated with increased production of proinflammatory cytokines and chemokines in both the bladder and the kidneys. Finally, we observed that the putative S. saprophyticus virulence factors Ssp and SdrI were important for persistence, but not for initial colonization, in the murine urinary tract. Thus, we characterized both host and bacterial factors involved in progression of S. saprophyticus UTI, and we describe a useful model system for studying factors involved in the pathogenesis of this Gram-positive uropathogen.


Subject(s)
Bacterial Proteins/physiology , Disease Models, Animal , Staphylococcal Infections/microbiology , Staphylococcus/pathogenicity , Urinary Tract Infections/microbiology , Virulence Factors/physiology , Animals , Colony Count, Microbial , Female , Histocytochemistry , Inflammation , Kidney/microbiology , Kidney/pathology , Macrophages/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Microscopy , Neutrophils/immunology , Staphylococcus/isolation & purification , Urinary Bladder/microbiology , Urinary Bladder/pathology , Virulence
11.
Cell Microbiol ; 10(12): 2568-78, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18754853

ABSTRACT

Uropathogenic Escherichia coli (UPEC), the causative agent of approximately 85% of urinary tract infections (UTI), is a major health concern primarily affecting women. During infection, neutrophils infiltrate the bladder, but the mechanism of recruitment is not well understood. Here, we investigated the role of UPEC-induced cytokine production in neutrophil recruitment and UTI progression. We first examined the kinetics of cytokine expression during UPEC infection of the bladder, and their contribution to neutrophil recruitment. We found that UPEC infection induces expression of several pro-inflammatory cytokines including granulocyte colony-stimulating factor (G-CSF, CSF-3), not previously known to be involved in the host response to UTI. G-CSF induces neutrophil emigration from the bone marrow; these cells are thought to be critical for bacterial clearance during infection. Upon neutralization of G-CSF during UPEC infection, we found fewer circulating neutrophils, decreased neutrophil infiltration into the bladder and, paradoxically, a decreased bacterial burden in the bladder. However, depletion of G-CSF resulted in a corresponding increase in macrophage-activating cytokines, such as monocyte chemotactic protein-1 (MCP-1, CCL-2) and Il-1beta, which may be key in host response to UPEC infection, potentially resolving the paradoxical decreased bacterial burden. Thus, G-CSF acts in a previously unrecognized role to modulate the host inflammatory response during UPEC infection.


Subject(s)
Escherichia coli Infections/immunology , Granulocyte Colony-Stimulating Factor/biosynthesis , Neutrophils/immunology , Urinary Tract Infections/immunology , Animals , Chemokine CCL2/biosynthesis , Escherichia coli/immunology , Female , Interleukin-1beta/biosynthesis , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...