Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Rheumatol Int ; 44(6): 1077-1087, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581449

ABSTRACT

Sporadic inclusion body myositis (sIBM) is a subgroup of idiopathic inflammatory myopathies characterised by progressive muscle weakness and skeletal muscle inflammation. Quantitative data on the myofibre morphology in sIBM remains scarce. Further, no previous study has examined fibre type association of satellite cells (SC), myonuclei number, macrophages, capillaries, and myonuclear domain (MD) in sIBM patients. Muscle biopsies from sIBM patients (n = 18) obtained previously (NCT02317094) were included in the analysis for fibre type-specific myofibre cross-sectional area (mCSA), SCs, myonuclei and macrophages, myonuclear domain, and capillarisation. mCSA (p < 0.001), peripheral myonuclei (p < 0.001) and MD (p = 0.005) were higher in association with type 1 (slow-twitch) than type 2 (fast-twitch) fibres. Conversely, quiescent SCs (p < 0.001), centrally placed myonuclei (p = 0.03), M1 macrophages (p < 0.002), M2 macrophages (p = 0.013) and capillaries (p < 0.001) were higher at type 2 fibres compared to type 1 fibres. In contrast, proliferating (Pax7+/Ki67+) SCs (p = 0.68) were similarly associated with each fibre type. Type 2 myofibres of late-phase sIBM patients showed marked signs of muscle atrophy (i.e. reduced mCSA) accompanied by higher numbers of associated quiescent SCs, centrally placed myonuclei, macrophages and capillaries compared to type 1 fibres. In contrast, type 1 fibres were suffering from pathological enlargement with larger MDs as well as fewer nuclei and capillaries per area when compared with type 2 fibres. More research is needed to examine to which extent different therapeutic interventions including targeted exercise might alleviate these fibre type-specific characteristics and countermeasure their consequences in impaired functional performance.


Subject(s)
Myositis, Inclusion Body , Regeneration , Humans , Myositis, Inclusion Body/pathology , Myositis, Inclusion Body/physiopathology , Male , Female , Aged , Middle Aged , Muscle Fibers, Skeletal/pathology , Macrophages/pathology , Inflammation/pathology , Biomarkers/analysis , Muscle, Skeletal/pathology , Satellite Cells, Skeletal Muscle/pathology , Biopsy , Muscle Fibers, Slow-Twitch/pathology , Muscle Fibers, Fast-Twitch/pathology
2.
J Appl Physiol (1985) ; 135(6): 1360-1371, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37881849

ABSTRACT

Aging is typically associated with decreased muscle strength and rate of force development (RFD), partly explained by motor unit remodeling due to denervation, and subsequent loss of fast-twitch type II myofibers. Exercise is commonly advocated to counteract this detrimental loss. However, it is unclear how life-long strength versus endurance training may differentially affect markers of denervation and reinnervation of skeletal myofibers and, in turn, affect the proportion and morphology of fast-twitch type II musculature. Thus, we compared fiber type distribution, fiber type grouping, and the prevalence of atrophic myofibers (≤1,494 µm2) in strength-trained (OS) versus endurance-trained (OE) master athletes and compared the results to recreationally active older adults (all >70 yr, OC) and young habitually active references (<30 yr, YC). Immunofluorescent stainings were performed on biopsy samples from vastus lateralis, along with leg press maximal strength and RFD measurements. OS demonstrated similar type II fiber distribution (OS: 52.0 ± 16.4%; YC: 51.1 ± 14.4%), fiber type grouping, maximal strength (OS: 170.0 ± 18.9 kg, YC: 151.0 ± 24.4 kg), and RFD (OS: 3,993 ± 894 N·s-1, YC: 3,470 ± 1,394 N·s-1) as young, and absence of atrophic myofibers (OS: 0.2 ± 0.7%; YC: 0.1 ± 0.4%). In contrast, OE and OC exhibited more atrophic fibers (OE: 1.2 ± 1.0%; OC: 1.1 ± 1.4%), more grouped fibers, and smaller proportion of type II fibers (OE: 39.3 ± 11.9%; OC: 35.0 ± 12.4%) than OS and YC (all P < 0.05). In conclusion, strength-trained master athletes were characterized by similar muscle morphology as young, which was not the case for recreationally active or endurance-trained old. These results indicate that strength training may preserve type II fibers with advancing age in older men, likely as a result of chronic use of high contractile force generation.NEW & NOTEWORTHY Aging is associated with loss of fast-twitch type II myofibers, motor unit remodeling, and grouping of myofibers. This study reveals, for the first time, that strength training preserves neural innervation of type II fibers, resulting in similar myofiber type distribution and grouping in life-long strength-trained master athletes as young moderately active adults. In contrast, life-long endurance-trained master athletes and recreationally active old adults demonstrated higher proportion of type I fibers accompanied by more marked grouping of type I myofibers, and more atrophic fibers compared with strength-trained master athletes and young individuals. Thus, strength training should be utilized as a training modality for preservation of fast-twitch musculature, maximal muscle strength, and rapid force capacity (RFD) with advancing age.


Subject(s)
Endurance Training , Male , Humans , Aged , Muscle Fibers, Skeletal/physiology , Aging/physiology , Exercise/physiology , Muscle Strength/physiology , Phenotype , Muscle, Skeletal/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology
3.
J Clin Endocrinol Metab ; 109(1): e266-e273, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37466198

ABSTRACT

CONTEXT: No information exists on the long-lasting effects of supraphysiological anabolic androgenic steroids (AASs) usage on the myocellular properties of human skeletal muscle in previous AAS users. OBJECTIVE: We hypothesized that former AAS users would demonstrate smaller myonuclei domains (ie, higher myonuclei density) than matched controls. METHODS: A community-based cross-sectional study in men aged 18-50 years engaged in recreational strength training. Muscle biopsies were obtained from the m. vastus lateralis. Immunofluorescence analyses were performed to quantify myonuclei density and myofiber size. RESULTS: Twenty-five males were included: 8 current and 7 previous AAS users and 10 controls. Median (25th-75th percentiles) accumulated duration of AAS use was 174 (101-206) and 140 (24-260) weeks in current and former AAS users, respectively (P = .482). Geometric mean (95% CI) elapsed duration since AAS cessation was 4.0 (1.2; 12.7) years among former AAS users. Type II muscle fibers in former AAS users displayed higher myonuclei density and DNA to cytoplasm ratio than controls, corresponding to smaller myonuclei domains (P = .013). Longer accumulated AAS use (weeks, log2) was associated with smaller myonuclei domains in previous AAS users: beta-coefficient (95% CI) -94 (-169; -18), P = .024. Type I fibers in current AAS users exhibited a higher amount of satellite cells per myofiber (P = .031) than controls. CONCLUSION: Muscle fibers in former AAS users demonstrated persistently higher myonuclei density and DNA to cytoplasm ratio 4 years after AAS cessation suggestive of enhanced retraining capacity.


Subject(s)
Anabolic Agents , Anabolic Androgenic Steroids , Male , Humans , Cross-Sectional Studies , Testosterone Congeners/adverse effects , Muscle Fibers, Skeletal , DNA , Anabolic Agents/adverse effects
4.
Neuromuscul Disord ; 32(6): 493-502, 2022 06.
Article in English | MEDLINE | ID: mdl-35595645

ABSTRACT

Sporadic inclusion body myositis (sIBM) is characterised by skeletal muscle inflammation, progressive muscle loss and weakness, which is largely refractory to immunosuppressive treatment. Low-load blood-flow restricted (BFR) training has been shown to evoke gains in myofibre cross sectional area (mCSA) in healthy adults. This could partially be due to the activation and integration of muscle satellite cells (SC) resulting in myonuclei addition. Consequently, this study investigated the effect of 12-weeks lower limb low-load BFR resistance training in sIBM patients on SC and myonuclei content, myofibre size and capillarization. Muscle biopsies from sIBM patients randomised to 12-weeks of low-load BFR resistance training (n = 11) or non-exercising controls (CON) (n = 9) were analysed for SC and myonuclei content, myofibre size and capillarization using three-colour immunofluorescence microscopy and computerised quantification procedures. No between-group differences (time-by-group interactions) or within-groups changes were observed for resident SCs (Pax7+/Six1+), proliferating SCs (Pax7+/ Ki67+), myonuclei (Six1+), type 1 mCSA or capillary number (CD31+). However, a time-by-group interaction for type 2 mCSA was observed (p = 0.04). Satellite cell content, myonuclei number, mCSA and capillary density remained unaffected following 12-weeks low-load BFR resistance training, indicating limited myogenic capacity and satellite cell plasticity in long-term sIBM patients.


Subject(s)
Myositis, Inclusion Body , Resistance Training/methods , Satellite Cells, Skeletal Muscle , Adult , Cell Proliferation , Exercise/physiology , Homeodomain Proteins/metabolism , Humans , Hypertrophy/pathology , Microscopy, Fluorescence , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Myositis, Inclusion Body/metabolism , Myositis, Inclusion Body/pathology , Myositis, Inclusion Body/therapy , Satellite Cells, Skeletal Muscle/physiology
5.
BMJ Open ; 11(6): e043793, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172544

ABSTRACT

INTRODUCTION: Idiopathic inflammatory myopathies (IIMs) are rare diseases characterised by non-suppurative inflammation of skeletal muscles and muscle weakness. Additionally, IIM is associated with a reduced quality of life. Strength training is known to promote muscle hypertrophy and increase muscle strength and physical performance in healthy young and old adults. In contrast, only a few studies have examined the effects of high intensity strength training in patients with IIM and none using a randomised controlled trial (RCT) set-up. Thus, the purpose of this study is to investigate the effects of high-intensity strength training in patients affected by the IIM subsets polymyositis (PM), dermatomyositis (DM) and immune-mediated necrotising myopathy (IMNM) using an RCT study design. METHODS AND ANALYSIS: 60 patients with PM, DM or IMNM will be included and randomised into (1) high-intensity strength training or (2) Care-as-Usual. The intervention period is 16 weeks comprising two whole-body strength exercise sessions per week. The primary outcome parameter will be the changes from pre training to post training in the Physical Component Summary measure in the Short Form-36 health questionnaire. Secondary outcome measures will include maximal lower limb muscle strength, skeletal muscle mass, functional capacity, disease status (International Myositis Assessment and Clinical Studies Group core set measures) and questionnaires assessing physical activity levels and cardiovascular comorbidities. Furthermore, blood samples and muscle biopsies will be collected for subsequent analyses. ETHICS AND DISSEMINATION: The study complies with the Helsinki Declaration II and is approved by The Danish Data Protection Agency (P-2020-553). The study is approved by The Danish National Committee on Health Research Ethics (H-20030409). The findings of this trial will be submitted to relevant peer-reviewed journals. Abstracts will be submitted to international conferences. TRIAL REGISTRATION NUMBER: NCT04486261.


Subject(s)
Myositis , Resistance Training , Adult , Exercise , Humans , Muscle Strength , Muscle, Skeletal , Myositis/therapy , Randomized Controlled Trials as Topic
6.
J Appl Physiol (1985) ; 130(6): 1822-1835, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33914664

ABSTRACT

MRI can provide fundamental tools in decoding physiological stressors stimulated by training paradigms. Acute physiological changes induced by three diverse exercise protocols known to elicit similar levels of muscle hypertrophy were evaluated using muscle functional magnetic resonance imaging (mfMRI). The study was a cross-over study with participants (n = 10) performing three acute unilateral knee extensor exercise protocols to failure and a work matched control exercise protocol. Participants were scanned after each exercise protocol; 70% 1 repetition maximum (RM) (FF70); 20% 1RM (FF20); 20% 1RM with blood flow restriction (BFR20); free-flow (FF) control work matched to BFR20 (FF20WM). Post exercise mfMRI scans were used to obtain interleaved measures of muscle R2 (indicator of edema), R2' (indicator of deoxyhemoglobin), muscle cross sectional area (CSA) blood flow, and diffusion. Both BFR20 and FF20 exercise resulted in a larger acute decrease in R2, decrease in R2', and expansion of the extracellular compartment with slower rates of recovery. BFR20 caused greater acute increases in muscle CSA than FF20WM and FF70. Only BFR20 caused acute increases in intracellular volume. Postexercise muscle blood flow was higher after FF70 and FF20 exercise than BFR20. Acute changes in mean diffusivity were similar across all exercise protocols. This study was able to differentiate the acute physiological responses between anabolic exercise protocols. Low-load exercise protocols, known to have relatively higher energy contributions from glycolysis at task failure, elicited a higher mfMRI response. Noninvasive mfMRI represents a promising tool for decoding mechanisms of anabolic adaptation in muscle.NEW & NOTEWORTHY Using muscle functional MRI (mfMRI), this study was able to differentiate the acute physiological responses following three established hypertrophic resistance exercise strategies. Low-load exercise protocols performed to failure, with or without blood flow restriction, resulted in larger changes in R2 (i.e. greater T2-shifts) with a slow rate of return to baseline indicative of myocellular fluid shifts. These data were cross evaluated with interleaved measures of macrovascular blood flow, water diffusion, muscle cross sectional area (i.e. acute macroscopic muscle swelling), and intracellular water fraction measured using MRI.


Subject(s)
Resistance Training , Cross-Over Studies , Fluid Shifts , Humans , Muscle Strength , Muscle, Skeletal , Regional Blood Flow
7.
Am J Sports Med ; 48(13): 3214-3223, 2020 11.
Article in English | MEDLINE | ID: mdl-33079573

ABSTRACT

BACKGROUND: Anterior cruciate ligament (ACL) rupture is a serious injury with a high prevalence worldwide, and subsequent ACL reconstructions (ACLR) appear to be most commonly performed using hamstring-derived (semitendinosus tendon) autografts. Recovery of maximal muscle strength to ≥90% of the healthy contralateral limb is considered an important criterion for safe return to sports. However, the speed of developing muscular force (ie, the rate of force development [RFD]) is also important for the performance of many types of activities in sports and daily living, yet RFD of the knee extensor and flexor muscles has apparently never been examined in patients who undergo ACLR with hamstring autograft (HA). PURPOSE: To examine potential deficits in RFD, maximal muscle strength (ie, maximal voluntary isometric contraction [MVIC]), and functional capacity of ACLR-HA limbs in comparison with the healthy contralateral leg and matched healthy controls 3 to 9 months after surgery. STUDY DESIGN: Cross-sectional study; Level of evidence: 3. METHODS: A total of 23 young patients who had undergone ACLR-HA 3 to 9 months earlier were matched by age to 14 healthy controls; both groups underwent neuromuscular screening. Knee extensor and flexor MVIC and RFD, as well as functional capacity (single-leg hop for distance [SLHD] test, timed single-leg sit-to-stand [STS] test), were assessed on both limbs. Furthermore, patient-reported knee function (Knee injury and Osteoarthritis Outcome Score) was assessed. RESULTS: Knee extensor and flexor MVIC and RFD were markedly compromised in ACLR-HA limbs compared with healthy contralateral limbs (MVIC for extensor and flexor, 13% and 26%, respectively; RFD, 14%-17% and 32%-39%) and controls (MVIC, 16% and 31%; RFD, 14%-19% and 30%-41%) (P < .05-.001). Further, ACLR-HA limbs showed reduced functional capacity (reduced SLHD and STS performance) compared with contralateral limbs (SLHD, 11%; STS, 14%) and controls (SLHD, 20%; STS, 31%) (P < .01-.001). Strength (MVIC) and functional (SLHD) parameters were positively related to the duration of time after surgery (P < .05), although this relationship was not observed for RFD and STS. CONCLUSION: Knee extensor and flexor RFD and maximal strength, as well as functional single-leg performance, remained substantially reduced in ACLR-HA limbs compared with noninjured contralateral limbs and healthy controls 3 to 9 months after reconstructive surgery.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Hamstring Muscles , Anterior Cruciate Ligament Injuries/surgery , Autografts , Cross-Sectional Studies , Humans , Knee Joint , Muscle Strength
8.
J Appl Physiol (1985) ; 129(4): 748-759, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32853108

ABSTRACT

Important physiological quantities for investigating muscle hypertrophy include blood oxygenation, cell swelling, and changes in blood flow. The purpose of this study was to compare the acute changes of these parameters in human skeletal muscle induced by low-load (20% 1-RM) blood flow-restricted (BFR-20) knee extensor exercise compared with free-flow work-matched (FF-20WM) and free-flow 50% 1-RM (FF-50) knee extensor exercise using multimodal magnetic resonance imaging (MRI). Subjects (n = 11) completed acute exercise sessions for each exercise mode in an MRI scanner, where interleaved measures of muscle R2 (indicator of edema), [Formula: see text] (indicator of deoxyhemoglobin), macrovascular blood flow, and diffusion were performed before, between sets, and after the final set for each exercise protocol. BFR-20 exercise resulted in larger acute decreases in R2 and greater increases in cross-sectional area than FF-20WM and FF-50 (P < 0.01). Blood oxygenation decreased between sets during BFR-20, as indicated by a 13.6% increase in [Formula: see text] values (P < 0.01)), whereas they remained unchanged for FF-20WM and decreased during FF-50 exercise. Quadriceps blood flow between sets was highest for the heavier load (FF-50), averaging 305 mL/min, and lowest for BFR-20 at 123 ± 73 mL/min until post-exercise cuff release, where blood flow rates in BFR-20 exceeded both FF protocols (P < 0.01). Acute changes in diffusion rates were similar for all exercise protocols. This study was able to differentiate the acute exercise response of selected physiological factors associated with skeletal muscle hypertrophy. Marked differences in these parameters were found to exist between BFR and FF exercise conditions, which contribute to explain the anabolic potential of low-load blood flow restricted muscle exercise.NEW & NOTEWORTHY Acute changes in blood flow, diffusion, blood oxygenation, cross-sectional area, and the "T2 shift" are evaluated in human skeletal muscle in response to blood flow-restricted (BFR) and conventional free-flow knee extensor exercise performed in an MRI scanner. The acute physiological response to exercise was dependent on the magnitude of load and the application of BFR. Physiological variables changed markedly and established a steady state rapidly after the first of four exercise sets.


Subject(s)
Resistance Training , Exercise , Humans , Magnetic Resonance Imaging , Muscle Strength , Muscle, Skeletal , Regional Blood Flow
9.
Arthritis Res Ther ; 21(1): 293, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852482

ABSTRACT

BACKGROUND: Sporadic inclusion body myositis (sIBM) is clinically characterised by progressive proximal and distal muscle weakness and impaired physical function while skeletal muscle tissue displays abnormal cellular infiltration of T cells, macrophages, and dendritic cells. Only limited knowledge exists about the effects of low-load blood flow restriction exercise in sIBM patients, and its effect on the immunological responses at the myocellular level remains unknown. The present study is the first to investigate the longitudinal effects of low-load blood flow restriction exercise on innate and adaptive immune markers in skeletal muscle from sIBM patients. METHODS: Twenty-two biopsy-validated sIBM patients were randomised into either 12 weeks of low-load blood flow restriction exercise (BFRE) or no exercise (CON). Five patients from the control group completed 12 weeks of BFRE immediately following participation in the 12-week control period leading to an intervention group of 16 patients. Muscle biopsies were obtained from either the m. tibialis anterior or the m. vastus lateralis for evaluation of CD3-, CD8-, CD68-, CD206-, CD244- and FOXP3-positive cells by three-colour immunofluorescence microscopy and Visiopharm-based image analysis quantification. A linear mixed model was used for the statistical analysis. RESULTS: Myocellular infiltration of CD3-/CD8+ expressing natural killer cells increased following BFRE (P < 0.05) with no changes in CON. No changes were observed for CD3+/CD8- or CD3+/CD8+ T cells in BFRE or CON. CD3+/CD244+ T cells decreased in CON, while no changes were observed in BFRE. Pronounced infiltration of M1 pro-inflammatory (CD68+/CD206-) and M2 anti-inflammatory (CD68+/CD206+) macrophages were observed at baseline; however, no longitudinal changes in macrophage content were observed for both groups. CONCLUSIONS: Low-load blood flow restriction exercise elicited an upregulation in CD3-/CD8+ expressing natural killer cell content, which suggests that 12 weeks of BFRE training evokes an amplified immune response in sIBM muscle. However, the observation of no changes in macrophage or T cell infiltration in the BFRE-trained patients indicates that patients with sIBM may engage in this type of exercise with no risk of intensified inflammatory activity.


Subject(s)
Exercise/physiology , Immune System/immunology , Muscle, Skeletal/physiology , Myositis, Inclusion Body/physiopathology , Regional Blood Flow/physiology , Aged , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/immunology , Antigens, Differentiation, Myelomonocytic/metabolism , CD3 Complex/immunology , CD3 Complex/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Exercise Therapy/methods , Female , Humans , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mannose Receptor , Mannose-Binding Lectins/immunology , Mannose-Binding Lectins/metabolism , Middle Aged , Muscle Strength/immunology , Muscle Strength/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/immunology , Myositis, Inclusion Body/immunology , Receptors, Cell Surface/immunology , Receptors, Cell Surface/metabolism , Regional Blood Flow/immunology
10.
Med Sci Sports Exerc ; 49(6): 1157-1167, 2017 06.
Article in English | MEDLINE | ID: mdl-28121802

ABSTRACT

PURPOSE: The aim of the present study was to investigate the effect and time course of high-frequent low-load blood flow-restricted (BFR) resistance training on rapid force capacity (i.e., rate of torque development [RTD]). MATERIALS AND METHODS: Ten male subjects (22.8 ± 2.3 yr) performed four sets of knee extensor exercise (20% one-repetition maximum) to concentric failure during concurrent BFR of the thigh (100 mm Hg), and eight work-matched controls (21.9 ± 3.0 yr) trained without BFR (CON). Twenty-three training sessions were performed within 19 d. Maximal slow and fast knee joint velocity muscle strength and rapid force capacity (e.g., RTD) and evoked twitch contractile parameters were assessed before (Pre) and 5 and 12 d after (Post5 and Post12) training. Muscle biopsies were obtained Pre, after 8 d (Mid8), and 3 and 10 d after (Post3 and Post10) training to examine changes in myofiber area and expression of myocellular proteins known to be modified by cellular stress (CaMKII, annexin A6, SNO-CYS). RESULTS: RTD remained unchanged after BFR training at Post5, while increasing 15%-20% Post12 (P < 0.01). Evoked muscle twitch parameters showed a general decline Post5 (P < 0.01) while returning to baseline levels at Post12. All contractile parameters essentially remained unchanged in CON. Elevated CaMKII was observed with BFR training at Post3 (57%) and Post10 (71%) (P < 0.05), whereas SNO-CYS increased in CON at Mid8 (P < 0.05). CONCLUSION: This study is the first to show that low-load resistance exercise performed with BFR leads to marked increases in rapid force capacity (RTD). However, a general delayed adaptive response was observed for voluntary contractile parameters (including RTD) in parallel with a decline and subsequent recovery in evoked contractile properties, suggesting the delayed gain in rapid force capacity mainly have a peripheral origin.


Subject(s)
Muscle Strength/physiology , Muscle, Skeletal/blood supply , Resistance Training/methods , Humans , Male , Muscle Contraction/physiology , Muscle Proteins/metabolism , Pain Perception/physiology , Regional Blood Flow/physiology , Thigh/blood supply , Young Adult
11.
Acta Oncol ; 52(7): 1543-51, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23964657

ABSTRACT

INTRODUCTION: Loss of lean body mass is common following radiotherapy in patients with head and neck squamous cell carcinoma (HNSCC) and may reduce maximal muscle strength and functional performance. However, the associations between lean body mass, muscle strength and functional performance are unclear and no studies in HNSCC patients have compared the levels of these variables to the levels seen in healthy individuals. PURPOSE: The purpose of the present study was to investigate the associations between lean body mass, maximal muscle strength and functional performance in HNSCC patients and to compare the levels of these variables after radiotherapy and after progressive resistance training with the levels in healthy individuals. MATERIAL AND METHODS: Lean body mass (dual energy X-ray absorptiometry), maximal muscle strength (isokinetic dynamometry) and functional performance (10 m max gait speed, 30 s chair rise, 30 s arm curl, stair climb) from HNSCC patients from the DAHANCA 25 trials and data from 24 healthy individuals were included. RESULTS: Lean body mass and maximal muscle strength were significantly associated according to the gender and age-adjusted linear regression model (p < 0.0001). In addition, maximal muscle strength were associated with 30 s arm curl performance, 10 m max gait speed and 30 s chair rise (p < 0.0001). Multiple regression analyses showed that HNSCC patients expressed significant lower levels of the investigated variables after radiotherapy than healthy individuals (p < 0.0001), and that all differences were evened out after training. CONCLUSIONS: Significant associations were found between lean body mass, maximal muscle strength and functional performance in HNSCC patients. Patients expressed lower levels of these variables compared with healthy individuals, suggesting that lean body mass is a clinically relevant health factor in HNSCC patients.


Subject(s)
Body Composition , Head and Neck Neoplasms/physiopathology , Muscle Strength/physiology , Psychomotor Performance/physiology , Resistance Training , Thinness , Adult , Aged , Case-Control Studies , Female , Follow-Up Studies , Head and Neck Neoplasms/radiotherapy , Humans , Male , Middle Aged , Prognosis , Radiotherapy Dosage
12.
Radiother Oncol ; 108(2): 314-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23932192

ABSTRACT

PURPOSE: The critical weight loss observed in head and neck squamous cell carcinoma (HNSCC) patients following radiotherapy is mainly due to loss of lean body mass. This is associated with decreases in muscle strength, functional performance and Quality of Life (QoL). The present study investigated the effect of progressive resistance training (PRT) on lean body mass, muscle strength and functional performance in HNSCC patients following radiotherapy. PATIENTS AND METHODS: Following radiotherapy HNSCC patients were randomized into two groups: Early Exercise (EE, n=20) initiated 12 weeks of PRT followed by 12 weeks of self-chosen physical activity. Delayed Exercise (DE, n=21) initiated 12 weeks of self-chosen physical activity followed by 12 weeks of PRT. Lean body mass, muscle strength, functional performance and QoL were evaluated at baseline and after week 12 and 24. RESULTS: In the first 12 weeks lean body mass increased by 4.3% in EE after PRT and in the last 12 weeks by 4.2% in DE after PRT. These increases were significantly larger than the changes after self-chosen physical activity (p ≤ 0.005). Regardless of PRT start-up time, the odds ratio of increasing lean body mass by more than 4% after PRT was 6.26 (p<0.05). PRT significantly increased muscle strength, whereas functional performance increased significantly more than after self-chosen physical activity only after delayed onset of PRT. Overall QoL improved significantly more in EE than DE from baseline to week 12. CONCLUSION: PRT effectively increased lean body mass and muscle strength in HNSCC patients following radiotherapy, irrespectively of early or delayed start-up.


Subject(s)
Carcinoma, Squamous Cell/rehabilitation , Carcinoma, Squamous Cell/radiotherapy , Head and Neck Neoplasms/rehabilitation , Head and Neck Neoplasms/radiotherapy , Muscle Strength/physiology , Resistance Training/methods , Adult , Aged , Body Composition , Body Mass Index , Carcinoma, Squamous Cell/pathology , Exercise Therapy/methods , Female , Follow-Up Studies , Head and Neck Neoplasms/pathology , Humans , Male , Middle Aged , Muscle, Skeletal/physiology , Neoplasm Invasiveness/pathology , Neoplasm Staging , Quality of Life , Squamous Cell Carcinoma of Head and Neck , Time Factors , Weight Loss
13.
J Physiol ; 590(17): 4351-61, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22802591

ABSTRACT

Low-load resistance training with blood flow restriction has been shown to elicit substantial increases in muscle mass and muscle strength; however, the effect on myogenic stem cells (MSCs) and myonuclei number remains unexplored. Ten male subjects (22.8 ± 2.3 years)performed four sets of knee extensor exercise (20% 1RM) to concentric failure during bloodflow restriction (BFR) of the proximal thigh (100 mmHg), while eight work-matched controls(21.9 ± 3.0 years) trained without BFR (control, CON). Twenty-three training sessions were performed within 19 days. Maximal isometric knee extensor strength (MVC) was examined pre- and post-training, while muscle biopsies were obtained at baseline (Pre), after 8 days intervention(Mid8) and 3 (Post3) and 10 days (Post10) post training to examine changes in myofibre area (MFA), MSC and myonuclei number. MVC increased by 7.1% (Post5) and 10.6% (Post12)(P <0.001) with BFR training, while type I and II MFA increased by 38% (Mid8), 35 ­ 37%(Post3) and 31 ­ 32% (Post10) (P <0.001). MSCs per myofibre increased with BFR training from 0.10 ± 0.01 (Pre) to 0.38 ± 0.02 (Mid8), 0.36 ± 0.04 (Post3) and 0.25 ± 0.02 (Post10) (P <0.001). Likewise, myonuclei per myofibre increased from 2.49 ± 0.07 (Pre) to 3.30 ± 0.22(Mid8), 3.20 ± 0.16 (Post3) and 3.11 ± 0.11 (Post10), (P<0.01). Although MFA increased in CON at Mid8, it returned to baseline at Post3. No changes in MSC or myonuclei number were observed in CON. This study is the first to show that short-term low-load resistance exercise performed with partial blood flow restriction leads to marked proliferation of myogenic stem cells and resulting myonuclei addition in human skeletal muscle, which is accompanied by substantial myofibre hypertrophy.


Subject(s)
Adult Stem Cells/cytology , Adult Stem Cells/physiology , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/physiology , Resistance Training , Cell Proliferation , Exercise/physiology , Humans , Hypertrophy/pathology , Male , Muscle Strength/physiology , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Muscle, Skeletal/physiology , Regional Blood Flow/physiology , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...