Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Sci Total Environ ; 944: 173880, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857796

ABSTRACT

In the last decade, extensive fungal growth has developed in Danish museums parallel to climate change, challenging occupational health and heritage preservation. The growth was unexpected as the museums strived to control relative humidity below 60 %, and it should exceed 75 % to risk growth. A Danish case study found xerophilic Aspergillus species able to grow at low relative humidity in a museum repository. This cross-sectional study aimed to examine whether xerophilic growth from Aspergillus section Restricti has become a novel contaminant nationally distributed in Danish museum repositories striving to control relative humidity according to international environmental recommendations for heritage collections. The study examined The National Museum of Denmark and eight large State Recognized museums distributed throughout Denmark. It was based on 600 swab and tape-lift samples and 60 MAS100-Eco and filter air samples analyzed for fungi with cultivation and morphological identification, Big-Dye-Sanger sequencing, CaM-Nanopore and ITS-Illumina amplicon sequencing. The study showed growth from seven xerophilic Aspergillus species: A. conicus, A. domesticus, A. glabripes, A. halophilicus, A. magnivesiculatus, A. penicilloides, A. vitricola, of which three are new to Denmark, and 13 xerotolerant Aspergillus species. There was no growth from other fungal species. The multiple detection approach provided a broad characterization; however, there was variance in the detected species depending on the analysis approach. Cultivation and Big-Dye Sanger sequencing showed the highest Aspergillus diversity, detecting 17 species; CaM-Nanopore amplicon sequencing detected 12 species; and ITS-illumina amplicon sequencing detected two species but the highest overall diversity. Cultivation, followed by Big-Dye Sanger and CaM-amplicon sequencing, proved the highest compliance. The study concluded that xerophilic Aspergillus growth is nationally distributed and suggests species from Aspergillus section Restricti as a novel contaminant in climate-controlled museum repositories. To safeguard occupational health and heritage preservation research in sustainable solutions, avoiding xerophilic growth in museum collections is most important.

2.
Sci Total Environ ; 923: 171189, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447726

ABSTRACT

Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.


Subject(s)
Antifungal Agents , Fungal Proteins , Antifungal Agents/pharmacology , Retrospective Studies , Fungal Proteins/genetics , Fungi , Itraconazole , Aspergillus fumigatus , Microbial Sensitivity Tests , Azoles
3.
Bioresour Technol ; 399: 130559, 2024 May.
Article in English | MEDLINE | ID: mdl-38460566

ABSTRACT

Hydrothermal liquefaction (HTL) shows promise for converting wet biomass waste into biofuel, but the resulting high-strength process water (PW) requires treatment. This study explored enhancing energy recovery by anaerobic digestion using semi-batch reactors. Co-digesting manure with HTL-PW from wheat straw-manure co-HTL yielded methane (43-49% of the chemical oxygen demand, COD) at concentrations up to 17.8 gCOD·L-1, whereas HTL-PW from sewage sludge yielded methane (43% of the COD) up to only 12.8 gCOD·L-1 and complete inhibition occurred at 17 gCOD·L-1. Microbial community shifts confirmed inhibition of methanogenic archaea, while hydrolytic-fermentative bacteria were resilient. Differences in chemical composition, particularly higher levels of N-containing heterocyclic compounds in PW of sewage sludge, likely caused the microbial inhibition. The considerable potential of combining HTL with anaerobic digestion for enhanced energy recovery from straw-manure in an agricultural context is demonstrated, yet sewage sludge HTL-PW requires more advanced approaches to deal with methanogenesis inhibitors.


Subject(s)
Sewage , Wastewater , Sewage/microbiology , Triticum , Manure , Anaerobiosis , Bioreactors , Methane , Biofuels
4.
J Hazard Mater ; 468: 133739, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401210

ABSTRACT

Feast-famine (FF) regimes improved the removal of recalcitrant pharmaceuticals in moving bed biofilm reactors (MBBRs), but the optimal FF cycle remained unresolved. The effects of FF cycle time on the removal of bulk substrates (organic carbon and nitrogen) and trace pharmaceuticals by MBBR are systematically evaluated in this study. The feast to famine ratio was fixed to 1:2 to keep the same loading rate, but the time for the FF cycles varied from 18 h to 288 h. The MBBR adapted to the longest FF cycle time (288 h equaling 48 × HRT) resulted in significantly higher degradation rates (up to +183%) for 12 out of 28 pharmaceuticals than a continuously fed (non-FF) reactor. However, other FF cycle times (18, 36, 72 and 144 h) only showed a significant up-regulation for 2-3 pharmaceuticals compared to the non-FF reactor. Enantioselective degradation of metoprolol and propranolol occurred in the second phase of a two phase degradation, which was different for the longer FF cycle time. N-oxidation and N-demethylation pathways of tramadol and venlafaxine differed across the FF cycle time suggestin the FF cycle time varied the predominant transformation pathways of pharmaceuticals. The abundance of bacteria in the biofilms varied considerably between different FF cycle times, which possibly caused the biofilm to remove more recalcitrant bulk organic C and pharmaceuticals under long cycle times.


Subject(s)
Waste Disposal, Fluid , Wastewater , Biofilms , Stereoisomerism , Bioreactors , Pharmaceutical Preparations
5.
Animals (Basel) ; 14(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254401

ABSTRACT

Monitoring data from several European countries indicate that European hedgehog (Erinaceus europaeus) populations are declining, and research exploring the causes of the decline, including exposure to potentially harmful xenobiotics and metals, may inform conservation initiatives to protect this species in the wild. Hedgehogs are ground-dwelling mammals, feeding on a range of insects, slugs, snails, and earthworms, as well as eggs, live vertebrates, and carrion, including carcasses of apex predator species representing higher levels of the food chain. Consequently, hedgehogs come into close contact with contaminants present in their habitats and prey. This review investigated the studies available on the subject of the occurrence of metals and organic xenobiotics in hedgehogs. This study found that a vast range of different pesticides; persistent organic pollutants (POPs), including organochlorine compounds and brominated flame retardants (BFRs); as well as toxic heavy metals could be detected. Some compounds occurred in lethal concentrations, and some were associated with a potential adverse effect on hedgehog health and survival. Due to their ecology, combined with the opportunity to apply non-invasive sampling techniques using spines as sampling material, we suggest that the European hedgehog is a relevant bioindicator species for monitoring the exposure of terrestrial wildlife to potential toxicants in urban and rural environments.

6.
Biotechnol Biofuels Bioprod ; 16(1): 183, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017526

ABSTRACT

The biogas produced through anaerobic digestion (AD) of renewable feedstocks is one of the promising alternatives to replace fossil-derived energy. Even though lignocellulosic biomass is the most abundant biomass on earth, only a small fraction is being used towards resources recovery, leaving a great potential unexploited. In this study, the combination of state-of-art genomic techniques and engineered systems were used to further advance the knowledge on biogas production from lignocellulosic-rich residues and the microbiome involved in the anaerobic digestion hereof. A long-term adapted anaerobic microbiome capable of degrading wheat straw as the sole substrate was investigated using protein stable isotope probing (protein-SIP). The results indicated that a diverse microbial community, primarily composed of Firmicutes and Methanogens, played crucial roles in cellulose degradation and methane production. Notably, Defluviitoga tunisiensis, Syntrophothermus lipocalidus, and Pelobacter carbinolicus were identified as direct metabolizers of cellulose, while Dehalobacterium assimilated labelled carbon through cross-feeding. This study provides direct evidence of primary cellulose degraders and sheds light on their genomic composition. By harnessing the potential of lignocellulosic biomass and understanding the microbial communities involved, we can promote sustainable biogas production, contributing to energy security and environmental preservation.

7.
Water Res ; 245: 120599, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37717325

ABSTRACT

Can biofilms enhance the rates of phosphorus removal in wastewater treatment? In order to narrow the scientific gap on the effect of biofilm thickness on the activity and microbial community of phosphorus-accumulating bacteria, this study investigated biofilms of 30 to 1000 µm thickness in a moving bed biofilm reactor. Measurements on 5 different biofilm carriers showed that biomass-specific phosphorus release and uptake rates increased as a function of biofilm thickness for biofilms thinner than about 110 µm but were lower for thicker biofilms of about 550-1000 µm. The reduced phosphorus uptake and release rates in the thickest biofilms can result from substrate mass transfer limitations whereas the low activity in the thinnest biofilms can be related to a too high turnover rate in the biofilm due to heterotrophic growth. Additionally, the microbial ecology of the different biofilms confirms the observed phosphorus uptake and release rates. The results from the full-length 16S rRNA gene sequencing of the bacterial community showed that the thicker biofilms were characterized by higher relative abundance (40-58%) of potential phosphorus accumulating genera Zoogloea, Acinetobacter, Dechloromonas and Ca. Accumulibacter. In contrast, the thinner biofilms were dominated by the genus Ferribacterium (34-60%), which might be competing with phosphorus-accumulating bacteria as indicated by the relatively high acetate uptake rates in the thinner biofilms. It is concluded that there is an optimal biofilm thickness of 100-500 µm, at which the phosphorus accumulating bacteria have the highest activity.

8.
J Environ Qual ; 52(6): 1139-1151, 2023.
Article in English | MEDLINE | ID: mdl-37703095

ABSTRACT

Manure management is a significant source of global methane emissions, and there is an increased interest in understanding and predicting emissions. The hydrolysis rate of manure organic matter is critical for understanding and predicting methane emissions. We estimated hydrolysis rate constants of crude protein, fibers, and lipids and used the Arrhenius equation to describe its dependency on temperature. Simultaneously, measurements of methane emission, 13/12 C isotope ratios, and methanogen community were conducted. This was achieved by incubating fresh pig manure without inoculum at 10°C, 15°C, 20°C, and 25°C for 85 days in a lab-scale setup. Hydrolysis of hemicellulose and cellulose increased more with temperature than crude protein, but still, hydrolysis rate of crude protein was highest at all temperatures. Results suggested that crude protein consisted of multiple substrate groups displaying large differences in degradability. Lipids and lignin were not hydrolyzed during incubations. Cumulative methane emissions were 7.13 ± 2.69, 24.6 ± 8.00, 66.7 ± 4.8, and 105.7 ± 7.14 gCH4 kgVS -1 at 10°C, 15°C, 20°C, and 25°C, respectively, and methanogenic community shifted from Methanosphaera toward Methanocorpusculum over time and more quickly at higher temperatures. This study provides important parameter estimates and dependencies on temperature, which is important in mechanistic methane emission models. Further work should focus on characterizing quickly degradable substrate pools in the manure organic matter as they might be the main carbon source of methane emission from manure management.


Subject(s)
Euryarchaeota , Manure , Animals , Swine , Temperature , Methane/metabolism , Euryarchaeota/metabolism , Lipids
9.
Sci Rep ; 13(1): 13092, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608001

ABSTRACT

The recent development of techniques to sequence ancient DNA has provided valuable insights into the civilisations that came before us. However, the full potential of these methods has yet to be realised. We extracted ancient DNA from a recently exposed fracture surface of a clay brick deriving from the palace of king Ashurnasirpal II (883-859 BCE) in Nimrud, Iraq. We detected 34 unique taxonomic groups of plants. With this research we have made the pioneering discovery that ancient DNA, effectively protected from contamination inside a mass of clay, can successfully be extracted from a 2900-year-old clay brick. We encourage future research into this subject, as the scientific prospects for this approach are substantial, potentially leading to a deeper understanding of ancient and lost civilisations.


Subject(s)
Clay , Construction Materials , DNA, Ancient , Plants , Clay/chemistry , Construction Materials/history , DNA, Ancient/analysis , DNA, Ancient/isolation & purification , History, Ancient , Iraq , Museums , Plants/classification , Plants/genetics , Time Factors , Archaeology/methods
10.
J Nat Prod ; 86(7): 1690-1697, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37411021

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a major human pathogen that causes a wide range of infections. Its resistance to ß-lactam antibiotics complicates treatment due to the limited number of antibiotics with activity against MRSA. To investigate development of alternative therapeutics, the mechanisms that mediate antibiotic resistance in MRSA need to be fully understood. In this study, MRSA cells were subjected to antibiotic stress from methicillin in combination with three cannabinoid compounds and analyzed using proteomics to assess the changes in physiology. Subjecting MRSA to nonlethal levels of methicillin resulted in an increased production of penicillin-binding protein 2 (PBP2). Exposure to cannabinoids showed antibiotic activity against MRSA, and differential proteomics revealed reduced levels of proteins involved in the energy production as well as PBP2 when used in combination with methicillin.


Subject(s)
Cannabinoids , Methicillin-Resistant Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Methicillin/metabolism , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Penicillin-Binding Proteins/metabolism , Proteomics , Cannabinoids/chemistry , Cannabinoids/pharmacology
11.
Bioresour Technol ; 385: 129430, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37399952

ABSTRACT

PBAT (poly butylene adipate-co-terephthalate) is a widely used biodegradable plastic, but the knowledge about its metabolization in anaerobic environments is very limited. In this study, the anaerobic digester sludge from a municipal wastewater treatment plant was used as inoculum to investigate the biodegradability of PBAT monomers in thermophilic conditions. The research employs a combination of 13C-labelled monomers and proteogenomics to track the labelled carbon and identify the microorganisms involved. A total of 122 labelled peptides of interest were identified for adipic acid (AA) and 1,4-butanedio (BD). Through the time-dependent isotopic enrichment and isotopic profile distributions, Bacteroides, Ichthyobacterium, and Methanosarcina were proven to be directly involved in the metabolization of at least one monomer. This study provides a first insight into the identity and genomic potential of microorganisms responsible for biodegradability of PBAT monomers during anaerobic digestion under thermophilic conditions.


Subject(s)
Carbon , Polyesters , Polyesters/metabolism , Anaerobiosis , Adipates/chemistry
12.
J Proteomics ; 279: 104888, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36965770

ABSTRACT

Synthetic plastics, like polyethylene terephthalate (PET), have become an essential part of modern life. Many of these products are remarkably persistent in the environment, and the accumulation in the environment is recognised as a major threat. Therefore, an increasing interest has been focusing on the screening for organisms able to degrade and assimilate the plastic. Ideonella sakaiensis originally isolated from a plastisphere has been reported as a bacterium that was solely thriving on the degradation on PET films. The processes affected by the presence of PET and its monomeric substances terephthalic acid, ethylene glycol, ethyl glycolate, and sodium glyoxylate monohydrate were elucidated by analysis of differential protein expression. The exposure of PET and its monomers induced the MHETase and affect two major pathways: the TCA cycle and the ß-oxidation pathway. The increased expression of proteins directly or indirectly involved in these pathways suggests their underlying importance in the degradation of PET by I. sakaiensis since these proteins are mechanistically supporting the enzymes involved in the degradation of PET and its monomers.


Subject(s)
Burkholderiales , Polyethylene Terephthalates , Polyethylene Terephthalates/metabolism , Proteomics , Burkholderiales/metabolism , Hydrolases/metabolism
13.
Water Res ; 230: 119535, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36610183

ABSTRACT

The removal of organic micropollutants in municipal wastewater treatment is an extensively studied field of research, but the underlying enzymatic processes have only been elucidated to a small extent so far. In order to shed more light on the enzymatic degradation of the artificial sweetener acesulfame (ACE) in this context, we enriched two bacterial taxa which were not yet described to be involved in the degradation of ACE, an unknown Chelatococcus species and Ensifer adhaerens, by incubating activated sludge in chemically defined media containing ACE as sole carbon source. Cell-free lysates were extracted, spiked with ACE and analyzed via target LC-MS/MS, demonstrating for the first time enzymatically catalyzed ACE degradation outside of living cells. Fractionation of the lysate via two-dimensional fast protein liquid chromatography (FPLC) succeeded in a partial separation of the enzymes catalyzing the initial transformation reaction of ACE from those catalyzing the further transformation pathway. Thereby, an accumulation of the intermediate transformation product acetoacetamide-n-sulfonic acid (ANSA) in the ACE-degrading fractions was achieved, providing first quantitative evidence that the cleavage of the sulfuric ester moiety of ACE is the initial transformation step. The metaproteome of the enrichments was analyzed in the FPLC fractions and in the unfractionated lysate, using shotgun proteomics via UHPLC-HRMS/MS and label-free quantification. The comparison of protein abundances in the FPLC fractions to the corresponding ACE degradation rates revealed a metallo-ß-lactamase fold metallo-hydrolase as most probable candidate for the enzyme catalyzing the initial transformation from ACE to ANSA. This enzyme was by far the most abundant of all detected proteins and amounted to a relative protein abundance of 91% in the most active fraction after the second fractionation step. Moreover, the analysis of the unfractionated lysate resulted in a list of further proteins possibly involved in the transformation of ACE, most striking a highly abundant amidase likely catalyzing the further transformation of ANSA, and an ABC transporter substrate-binding protein that may be involved in the uptake of ACE into the cell.


Subject(s)
Tandem Mass Spectrometry , Water Pollutants, Chemical , Chromatography, Liquid , Proteomics , Water Pollutants, Chemical/chemistry , Sweetening Agents , Catalysis
14.
Front Microbiol ; 13: 1030429, 2022.
Article in English | MEDLINE | ID: mdl-36504791

ABSTRACT

Collembola are a group of globally distributed microarthropods that can tolerate low temperature and are active in extremely cold environments. While it is well known that animal diets can shape their microbiota, the microbiota of soil animals is not well described, particularly for animals with limited food resources, such as Collembola active in winter at low temperatures. In this study, we explored the effects of three different food sources; corn litter (agriculture grain residuals), Mongolian oak litter (natural plant residuals), and yeast (common food for Collembola culture), on the microbiota of a winter-active Collembola species, Desoria ruseki. We found that microbial diversity and community composition of the Collembola were strongly altered after feeding with different food sources for 30 days. Collembola individuals fed on corn litter harbored the highest bacterial richness and were dominated by a representative of Microbacteriaceae. In contrast, those fed on yeast exhibited the lowest bacterial richness and were primarily colonized by Pseudomonas. The microbial communities associated with the winter-active Collembola differed significantly from those observed in the food. Collembola nutrient turnover also differed when cultured with different food sources, as indicated by the C and N stable isotopic signatures. Our study highlights microbial associations with stable isotopic enrichments of the host. Specifically, the Arthrobacter was positively correlated with δ13C enrichment in the host. Representatives of Microbacteriaceae, Micrococcaceae, TM7a, Devosia, and Rathayibacter were positively correlated with δ15N enrichment of the host. Our study indicates that food sources are major determinants for Collembola microbiota that simultaneously alter consumers' isotopic niches, thereby improving our understanding of the roles played by host-microbiota interactions in sustaining soil biodiversity during the winter.

15.
Anim Microbiome ; 4(1): 58, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36404315

ABSTRACT

BACKGROUND: Prebiotics are known to have a positive impact on fish health and growth rate, and ß-glucans are among the most used prebiotics on the market. In this study, rainbow trout (Oncorhynchus mykiss) were treated with a ß-1,3;1,6-glucan dietary supplement (at a dose of 0 g, 1 g, 10 g, and 50 g ß-glucan per kg of feed). After 6 weeks, the effect of the ß-glucan was evaluated by determining the changes in the microbiota and the blood serum metabolites in the fish. The impact of ß-glucan on the immune system was evaluated through a challenge experiment with the bacterial fish pathogen Yersinia ruckeri. RESULTS: The microbiota showed a significant change in terms of composition following ß-glucan treatment, notably an increase in the relative abundance of members of the genus Aurantimicrobium, associated with a decreased abundance of the genera Carnobacterium and Deefgea. Furthermore, analysis of more than 200 metabolites revealed that the relative levels of 53 metabolites, in particular compounds related to phosphatidylcholines, were up- or downregulated in response to the dietary supplementation, this included the amino acid alanine that was significantly upregulated in the fish that had received the highest dose of ß-glucan. Meanwhile, no strong effect could be detected on the resistance of the fish to the bacterial infection. CONCLUSIONS: The present study illustrates the ability of ß-glucans to modify the gut microbiota of fish, resulting in alteration of the metabolome and affecting fish health through the lipidome of rainbow trout.

16.
Front Microbiol ; 13: 886252, 2022.
Article in English | MEDLINE | ID: mdl-35783446

ABSTRACT

The gut microbiome plays a critical role in many aspects of host life, and the microbial community composition is heavily influenced by the prevailing conditions in the gut environment. Community composition has been suggested to have large implications for conservation efforts, and gut health has become of interest for optimizing animal care in captivity. In this study, we explore the gut microbiome of a wide range of animals in the context of conservation biology. The composition of the gut microbial community of 54 mammalian animal species was investigated using 16S rRNA gene amplicon sequencing. The composition of the gut microbiota clearly reflects diet and the structure of the gastrointestinal system, and it is to a certain degree more similar between closely related animals. Specific clusters of taxa were observed across animals of the same species, diet, and gut morphology. The microbiota retained regardless of captivity status is hypothesized to cover important symbiotic relationships with the host, while the remaining part reflects the artificial living conditions and can therefore be used as a future tool for conservation biologists. For five animal species (giraffes, horses, baboons, elephants, and zebras), it was possible to compare the microbiota of wild and captive individuals. Differences were observed in the proportion of microbiota detected between wild and captive specimens of the same animal species. We propose that the gut microbiota harbours important species, which can potentially serve as indicators for the well-being of the animal and the effect of living in captivity.

17.
Environ Pollut ; 310: 119786, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35872283

ABSTRACT

Tetrabromobisphenol A (TBBPA) is the most used flame retardant worldwide and has become a threat to aquatic ecosystems. Previous research into the degradation of this micropollutant in anaerobic bioreactors has suggested several identities of putative TBBPA degraders. However, the organisms actively degrading TBBPA under in situ conditions have so far not been identified. Protein-stable isotope probing (protein-SIP) has become a cutting-edge technique in microbial ecology for enabling the link between identity and function under in situ conditions. Therefore, it was hypothesized that combining protein-based stable isotope probing with metagenomics could be used to identify and provide genomic insight into the TBBPA-degrading organisms. The identified 13C-labelled peptides were found to belong to organisms affiliated to Phytobacter, Clostridium, Sporolactobacillus, and Klebsilla genera. The functional classification of identified labelled peptides revealed that TBBPA is not only transformed by cometabolic reactions, but also assimilated into the biomass. By application of the proteogenomics with labelled micropollutants (protein-SIP) and metagenome-assembled genomes, it was possible to extend the current perspective of the diversity of TBBPA degraders in wastewater and predict putative TBBPA degradation pathways. The study provides a link to the active TBBPA degraders and which organisms to favor for optimized biodegradation.


Subject(s)
Polybrominated Biphenyls , Proteogenomics , Anaerobiosis , Biodegradation, Environmental , Bioreactors , Ecosystem , Isotopes
18.
Microb Biotechnol ; 15(7): 1966-1983, 2022 07.
Article in English | MEDLINE | ID: mdl-35644921

ABSTRACT

Microalgae comprise a phylogenetically very diverse group of photosynthetic unicellular pro- and eukaryotic organisms growing in marine and other aquatic environments. While they are well explored for the generation of biofuels, their potential as a source of antimicrobial and prebiotic substances have recently received increasing interest. Within this framework, microalgae may offer solutions to the societal challenge we face, concerning the lack of antibiotics treating the growing level of antimicrobial resistant bacteria and fungi in clinical settings. While the vast majority of microalgae and their associated microbiota remain unstudied, they may be a fascinating and rewarding source for novel and more sustainable antimicrobials and alternative molecules and compounds. In this review, we present an overview of the current knowledge on health benefits of microalgae and their associated microbiota. Finally, we describe remaining issues and limitation, and suggest several promising research potentials that should be given attention.


Subject(s)
Microalgae , Microbiota , Bacteria , Biofuels , Fungi
19.
Sci Total Environ ; 829: 154253, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35276168

ABSTRACT

Most bacteria live in microbial assemblages like biofilms and granules, and each layer of these assemblages provides a niche for certain bacteria with specific metabolic functions. In this study, a gentle (non-destructive) extraction approach based on a cation exchange resin and defined shear was employed to gradually disintegrate biomass and collect single layers of aerobic granules from a full-scale municipal wastewater treatment plant. The microbial community composition of granule layers was characterized using next-generation sequencing (NGS) targeting the 16S rRNA gene, and protein composition was investigated using metaproteomics. The chemical composition of eroded layers was explored using Fourier Transformed Infrared Spectroscopy. On the surface of the granules, the microbial structure (flocculation-supporting Nannocystis sp.) as well as composition of extracellular polymers (extracellular DNA) and proteome (chaperonins and binding proteins) favored microbial aggregation. Extracellular polymeric substances in the granules were composed of mostly proteins and EPS-producers, such as Tetrasphaera sp. and Zoogloea sp., were evenly distributed throughout the granule structure. The interior of the granules harbored several denitrifiers (e.g., Thauera sp.), phosphate-accumulating denitrifiers (Candidatus Accumulibacter, Dechloromonas sp.) and nitrifiers (Candidatus Nitrotoga). Proteins associated with glycolytic activity were identified in the outer and middle granule layers, and proteins associated with phosphorus conversions, in the deeper layers. In conclusion, the use of an existing cation-exchange resin for gradual biomass disintegration, combined with NGS and metaproteomic analysis was demonstrated as a promising approach for simultaneously investigating the identity and functions of microbes in multilayered biofilm structures.


Subject(s)
Microbiota , Sewage , Aerobiosis , Bioreactors/microbiology , Proteins/analysis , RNA, Ribosomal, 16S/genetics , Sewage/microbiology , Waste Disposal, Fluid/methods
20.
Sci Total Environ ; 808: 152016, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34856259

ABSTRACT

The occurrence of brominated flame retardants such as Tetrabromobisphenol A (TBBPA) in water bodies poses a serious threat to aquatic ecosystems. Degradation of TBBPA in wastewater has successfully been demonstrated to occur through anaerobic digestion (AD), although the involved microorganisms and the conditions favouring the conversion remains unclear. In this study, it was observed that bioconversion of TBBPA did not occur during the hydrolytic stage of the AD, but during the strictly fermentative stage. Bioconversion occurred in hydrolytic-acidogenic as well as in strictly acidogenic continuous bioreactors. This indicates that the microorganisms that degrade TBBPA benefit from the electron flux taking place during glycolysis and further transformations into short-chain fatty acids. The degradation kinetics of TBBPA was inversely proportional to the complexity of the wastewater as the apparent kinetics constants were 2.11, 1.86, and 0.52 h-1·gVSS-1 for glucose, starch, and domestic sewage as carbon source, respectively. Additionally, the micropollutant loading rate relative to the overall organic loading rate is of major importance during the investigation of cometabolic transformations. The long-term exposure to TBBPA at environmentally realistic concentrations did not cause any major changes in the microbiome composition. Multivariate statistical analysis of the evolvement of the microbiome throughout the incubation suggested that Enterobacter spp. and Clostridium spp. are the key players in TBBPA degradation. Finally, a batch enrichment was conducted, which showed that concentrations of 0.5 mg·L-1 or higher are detrimental to Clostridium spp., even though these organisms are putative TBBPA degraders. The Clostridium genus was outcompeted by the Enterobacter and Klebsiella genera, hereby highlighting the effect of unrealistic concentrations frequently used in culture-dependent studies on the microbial community composition.


Subject(s)
Flame Retardants , Microbiota , Polybrominated Biphenyls , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...