Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Metabolomics ; 20(1): 12, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38180611

ABSTRACT

INTRODUCTION: Alzheimer's Disease (AD) is complex and novel approaches are urgently needed to aid in diagnosis. Blood is frequently used as a source for biomarkers; however, its complexity prevents proper detection. The analytical power of metabolomics, coupled with statistical tools, can assist in reducing this complexity. OBJECTIVES: Thus, we sought to validate a previously proposed panel of metabolic blood-based biomarkers for AD and expand our understanding of the pathological mechanisms involved in AD that are reflected in the blood. METHODS: In the validation cohort serum and plasma were collected from 25 AD patients and 25 healthy controls. Serum was analysed for metabolites using nuclear magnetic resonance (NMR) spectroscopy, while plasma was tested for markers of neuronal damage and AD hallmark proteins using single molecule array (SIMOA). RESULTS: The diagnostic performance of the metabolite biomarker panel was confirmed using sparse-partial least squares discriminant analysis (sPLS-DA) with an area under the curve (AUC) of 0.73 (95% confidence interval: 0.59-0.87). Pyruvic acid and valine were consistently reduced in the discovery and validation cohorts. Pathway analysis of significantly altered metabolites in the validation set revealed that they are involved in branched-chain amino acids (BCAAs) and energy metabolism (glycolysis and gluconeogenesis). Additionally, strong positive correlations were observed for valine and isoleucine between cerebrospinal fluid p-tau and t-tau. CONCLUSIONS: Our proposed panel of metabolites was successfully validated using a combined approach of NMR and sPLS-DA. It was discovered that cognitive-impairment-related metabolites belong to BCAAs and are involved in energy metabolism.


Subject(s)
Alzheimer Disease , Amino Acids , Humans , Alzheimer Disease/diagnosis , Metabolomics , Amino Acids, Branched-Chain , Valine , Biomarkers
2.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175625

ABSTRACT

Retinal artery occlusion (RAO) is a devastating condition with no effective treatment. The management of RAO could potentially be improved through an in-depth understanding of the molecular alterations in the condition. This study combined advanced proteomic techniques and an experimental model to uncover the retinal large-scale protein profile of RAO. In 13 pigs, RAO was induced with an argon laser and confirmed by fluorescein angiography. Left eyes serving as controls received a sham laser without inducing occlusion. Retinal samples were collected after one, three, or six days and analyzed with liquid chromatography-tandem mass spectrometry. In RAO, 36 proteins were differentially regulated on day one, 86 on day three, and 557 on day six. Upregulated proteins included clusterin, vitronectin, and vimentin, with several proteins increasing over time with a maximum on day six, including clusterin, vimentin, osteopontin, annexin-A, signal transducer, and the activator of transcription 3. On day six, RAO resulted in the upregulation of proteins involved in cellular response to stress, hemostasis, innate immune response, and cytokine signaling. Downregulated proteins were involved in transmission across chemical synapses and visual phototransduction. This study identified the upregulation of multiple inflammatory proteins in RAO and the downregulation of proteins involved in visual pathways.


Subject(s)
Clusterin , Retinal Artery Occlusion , Animals , Swine , Vimentin/genetics , Proteomics/methods , Retina
3.
Medicina (Kaunas) ; 59(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36837445

ABSTRACT

Retinal vein occlusion (RVO) is a frequent visually disabling condition. The management of RVO continues to challenge clinicians. Macular edema secondary to RVO is often recurrent, and patients typically require intravitreal injections for several years. Understanding molecular mechanisms in RVO is a key element in improving the treatment of the condition. Studying the molecular mechanisms in RVO at the retinal level is possible using animal models of experimental RVO. Most studies of experimental RVO have been sporadic, using only a few animals per experiment. Here, we report on 10 years of experience of the use of argon laser-induced experimental RVO in 108 porcine eyes from 65 animals, including 65 eyes with experimental branch retinal vein occlusion (BRVO) and 43 eyes with experimental central retinal vein occlusion (CRVO). Reproducibility and methods for evaluating and controlling ischemia in experimental RVO are reviewed. Methods for studying protein changes in RVO are discussed in detail, including proteomic analysis, Western blotting, and immunohistochemistry. Experimental RVO has brought significant insights into molecular changes in RVO. Testing intravitreal interventions in experimental RVO may be a significant step in developing personalized therapeutic approaches for patients with RVO.


Subject(s)
Retinal Vein Occlusion , Animals , Swine , Retinal Vein Occlusion/complications , Retinal Vein Occlusion/drug therapy , Proteomics , Reproducibility of Results , Retina , Lasers , Tomography, Optical Coherence
4.
Molecules ; 27(11)2022 May 24.
Article in English | MEDLINE | ID: mdl-35684299

ABSTRACT

Aflibercept is a frequently used inhibitor of vascular endothelial growth factor (VEGF) in the treatment of macular edema following central retinal vein occlusion (CRVO). Retinal proteome changes following aflibercept intervention in CRVO remain largely unstudied. Studying proteomic changes of aflibercept intervention may generate a better understanding of mechanisms of action and uncover aspects related to the safety profile. In 10 Danish Landrace pigs, CRVO was induced in both eyes with an argon laser. Right eyes were treated with intravitreal aflibercept while left control eyes received isotonic saline water. Retinal samples were collected 15 days after induced CRVO. Proteomic analysis by tandem mass tag-based mass spectrometry identified a total of 21 proteins that were changed in content following aflibercept intervention. In retinas treated with aflibercept, high levels of aflibercept components were reached, including the VEGF receptor-1 and VEGF receptor-2 domains. Fold changes in the additional proteins ranged between 0.70 and 1.19. Aflibercept intervention resulted in a downregulation of pigment epithelium-derived factor (PEDF) (fold change = 0.84) and endoplasmin (fold change = 0.91). The changes were slight and could thereby not be confirmed with less precise immunohistochemistry and Western blotting. Our data suggest that aflibercept had a narrow mechanism of action in the CRVO model. This may be an important observation in cases when macular edema secondary to CRVO is resistant to aflibercept intervention.


Subject(s)
Macular Edema , Retinal Vein Occlusion , Angiogenesis Inhibitors/pharmacology , Animals , Intravitreal Injections , Macular Edema/complications , Macular Edema/etiology , Proteome , Proteomics , Receptors, Vascular Endothelial Growth Factor , Recombinant Fusion Proteins/pharmacology , Retinal Vein Occlusion/complications , Retinal Vein Occlusion/drug therapy , Retinal Vein Occlusion/metabolism , Swine , Vascular Endothelial Growth Factor A , Visual Acuity
5.
Metabol Open ; 12: 100125, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622190

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD) is a complex and multifactorial disease and novel approaches are needed to illuminate the underlying pathology. Metabolites comprise the end-product of genes, transcripts, and protein regulations and might reflect disease pathogenesis. Blood is a common biofluid used in metabolomics; however, since extracellular vesicles (EVs) hold cell-specific biological material and can cross the blood-brain barrier, their utilization as biological material warrants further investigation. We aimed to investigate blood- and EV-derived metabolites to add insigts to the pathological mechanisms of AD. METHODS: Blood samples were collected from 10 AD and 10 Mild Cognitive Impairment (MCI) patients, and 10 healthy controls. EVs were enriched from plasma using 100,000×g, 1 h, 4 °C with a wash. Metabolites from serum and EVs were measured using liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. Multivariate and univariate analyses were employed to identify altered metabolites in cognitively impaired individuals. RESULTS: While no significant EV-derived metabolites were found differentiating patients from healthy individuals, six serum metabolites were found important; valine (p = 0.001, fold change, FC = 0.8), histidine (p = 0.001, FC = 0.9), allopurinol riboside (p = 0.002, FC = 0.2), inosine (p = 0.002, FC = 0.3), 4-pyridoxic acid (p = 0.006, FC = 1.6), and guanosine (p = 0.004, FC = 0.3). Pathway analysis revealed branched-chain amino acids, purine and histidine metabolisms to be downregulated, and vitamin B6 metabolism upregulated in patients compared to controls. CONCLUSION: Using a combination of LC-MS and NMR methodologies we identified several altered mechanisms possibly related to AD pathology. EVs require additional optimization prior to their possible utilization as a biological material for AD-related metabolomics studies.

6.
Sci Rep ; 11(1): 18518, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531462

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia and without readily available clinical biomarkers. Blood-derived proteins are routinely used for diagnostics; however, comprehensive plasma profiling is challenging due to the dynamic range in protein concentrations. Extracellular vesicles (EVs) can cross the blood-brain barrier and may provide a source for AD biomarkers. We investigated plasma-derived EV proteins for AD biomarkers from 10 AD patients, 10 Mild Cognitive Impairment (MCI) patients, and 9 healthy controls (Con) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The ultracentrifuged EVs were washed and confirmed according to the MISEV2018 guidelines. Some AD patients presented with highly elevated FXIIIA1 (log2 FC: 4.6, p-value: 0.005) and FXIIIB (log2 FC: 4.9, p-value: 0.018). A panel of proteins was identified discriminating Con from AD (AUC: 0.91, CI: 0.67-1.00) with ORM2 (AUC: 1.00, CI: 1.00-1.00), RBP4 (AUC: 0.99, CI: 0.95-1.00), and HYDIN (AUC: 0.89, CI: 0.72-1.00) were found especially relevant for AD. This indicates that EVs provide an easily accessible matrix for possible AD biomarkers. Some of the MCI patients, with similar protein profiles as the AD group, progressed to AD within a 2-year timespan.


Subject(s)
Alzheimer Disease/metabolism , Cognitive Dysfunction/metabolism , Extracellular Vesicles/metabolism , Aged , Biomarkers/metabolism , Blood Coagulation/physiology , Female , Humans , Male , Middle Aged , Proteomics
7.
J Ophthalmol ; 2021: 6690260, 2021.
Article in English | MEDLINE | ID: mdl-33747556

ABSTRACT

Aflibercept is an inhibitor of vascular endothelial growth factor (VEGF) used to treat macular edema following branch retinal vein occlusion (BRVO). Despite well-documented efficacy, there is limited knowledge about proteome changes following aflibercept intervention in BRVO. Proteome changes may provide insights into mechanisms of action as well as aspects related to safety profile. In seven Danish Landrace pigs, BRVO was induced with a well-established experimental model of argon laser-induced BRVO. BRVO was induced in both eyes. Three days after the induced BRVO, aflibercept was injected intravitreally in the right eyes, while the left eyes received intravitreal isotonic saline water. Retinas were collected 15 days after the induced BRVO and analyzed with label-free quantification liquid chromatography tandem mass spectrometry (LFQ LC-MS/MS). Fourteen proteins were changed in expression following aflibercept intervention in the BRVO model. LFQ LC-MS/MS identified an upregulation of DnaJ homolog subfamily C member 17 (DNAJC17) (fold change = 6.19) and a modest downregulation of isoform 2 of the protein encoded by N-myc downstream regulated gene 2 (NDRG2) (fold change = 0.40). NDRG2 was unchanged by Western blotting. In the additional significantly regulated proteins, only discrete changes were observed (fold changes 0.52-1.59). Our study is the first to report an association between aflibercept intervention and the heat shock protein DNAJC17. Our results indicate that the role of heat shock proteins in the treatment of BRVO should be further explored.

8.
Adv Clin Chem ; 99: 1-48, 2020.
Article in English | MEDLINE | ID: mdl-32951635

ABSTRACT

Every cell in the body secretes extracellular vesicles (EVs) possibly as cellular signaling components and these cell-derivatives can be found in multiple numbers in biological fluids. EVs have in the scientific field received great attention in relation to pathophysiology and disease diagnostics. Altered protein expressions associated with circulating EVs in diseased individuals can serve as biomarkers for different disease states. This capacity paves the way for non-invasive screening tools and early diagnostic markers. However, no isolation method of EVs has been acknowledged as the "golden standard," thus reproducibility of the studies remains inadequate. Increasing interest in EV proteins as disease biomarkers could give rise to more scientific knowledge with diagnostic applicability. In this chapter, studies of proteins believed to be associated with EVs within cancer, autoimmunity, metabolic and neurodegenerative diseases have been outlined.


Subject(s)
Extracellular Vesicles/chemistry , Proteins/analysis , Animals , Autoimmune Diseases/diagnosis , Biomarkers/analysis , Humans , Metabolic Diseases/diagnosis , Neoplasms/diagnosis , Neurodegenerative Diseases/diagnosis
9.
Mol Vis ; 24: 759-766, 2018.
Article in English | MEDLINE | ID: mdl-30581282

ABSTRACT

Purpose: To identify retinal protein changes that mediate beneficial effects of intravitreal bevacizumab in experimental branch retinal vein occlusion (BRVO). Methods: In six Danish Landrace pigs, BRVO was induced with argon laser in both eyes. After BRVO was induced, the right eye of each animal was given an intravitreal injection of bevacizumab while the left eye was treated with saline water. The retinas were collected 15 days after BRVO, and differentially expressed proteins were analyzed with tandem mass tags-based mass spectrometry. Validation of statistically significantly changed proteins was performed with immunohistochemistry and western blotting. Results: Fluorescein angiography showed no recanalization of the occluded vessels. A total of 4,013 proteins were successfully identified and quantified. Nine proteins were statistically significantly changed following bevacizumab intervention. In experimental BRVO, bevacizumab treatment resulted in upregulation of transthyretin (TTR) and pantothenate kinase 3. Bevacizumab downregulated protocadherin 7, protein FAM192A, and ATP synthase protein 8. Immunohistochemistry revealed that TTR was highly abundant in the choroid following bevacizumab intervention. Conclusions: Bevacizumab intervention in experimental BRVO resulted in an increased level of TTR. This is the second study in which we showed an increased retinal level of TTR following anti-vascular endothelial growth factor (VEGF) intervention in experimental BRVO. We hypothesize that there is an interaction between TTR and VEGF and that bevacizumab may exert a beneficial effect on the retina by upregulating TTR.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Bevacizumab/pharmacology , Gene Expression Regulation/drug effects , Prealbumin/genetics , Retina/drug effects , Retinal Vein Occlusion/drug therapy , Animals , Cadherins/antagonists & inhibitors , Cadherins/genetics , Cadherins/metabolism , Choroid/blood supply , Choroid/diagnostic imaging , Choroid/drug effects , Choroid/metabolism , Fluorescein Angiography , Gene Expression Profiling , Humans , Immunoglobulin gamma-Chains/genetics , Immunoglobulin gamma-Chains/metabolism , Immunoglobulin kappa-Chains/genetics , Immunoglobulin kappa-Chains/metabolism , Intravitreal Injections , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Prealbumin/agonists , Prealbumin/metabolism , Retina/diagnostic imaging , Retina/metabolism , Retina/pathology , Retinal Vein Occlusion/diagnostic imaging , Retinal Vein Occlusion/genetics , Retinal Vein Occlusion/pathology , Swine
10.
Exp Eye Res ; 171: 174-182, 2018 06.
Article in English | MEDLINE | ID: mdl-29505751

ABSTRACT

A dexamethasone (DEX) intravitreal implant (OZURDEX) provides an effective treatment of inflammation secondary to branch retinal vein occlusion (BRVO). Retinal proteome changes which mediate the beneficial effects of the implant remain poorly understood. To study retinal proteome changes in BRVO following an intervention with a DEX implant this study combined an experimental model of BRVO with proteomic techniques. In eight Danish Landrace pigs experimental BRVO was induced in both eyes using argon laser. After inducing BRVO a DEX implant was injected into the right eye of each animal while the left control eye was given an identical injection without an implant. Fifteen days after BRVO and DEX implant intervention the retinas were excised and analyzed with tandem mass tag based mass spectrometry. A total of 26 significantly changed proteins were identified. DEX intervention reduced the retinal levels of platelet-derived growth factor receptor-α (PDGFR-α) and vascular endothelial growth factor receptor 2 (VEGFR-2). DEX treatment resulted in increased levels of caveolin-1, peptidyl-prolyl cis-trans isomerase FKBP5 and transgelin. Changes in PDGFR-α and caveolin-1 were confirmed with immunohistochemistry. In BRVO treated with the DEX implant a strong reaction for caveolin-1 was observed in the innermost retinal layers. DEX implant intervention may inhibit PDGF signaling by decreasing the retinal level of PDGFR-α while an increased content of caveolin-1 may help maintain the integrity of the blood-retinal barrier.


Subject(s)
Caveolin 1/metabolism , Dexamethasone/administration & dosage , Disease Models, Animal , Glucocorticoids/administration & dosage , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Retinal Vein Occlusion/drug therapy , Animals , Blood-Retinal Barrier , Blotting, Western , Chromatography, Liquid , Down-Regulation , Drug Implants , Intravitreal Injections , Mass Spectrometry , Microfilament Proteins/metabolism , Muscle Proteins/metabolism , Peptidylprolyl Isomerase/metabolism , Proteomics , Retinal Vein Occlusion/metabolism , Swine , Tacrolimus Binding Proteins/metabolism , Up-Regulation , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...