Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell Int ; 14(1): 17, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24571548

ABSTRACT

BACKGROUND: The oncogene PTI-1 was originally isolated from a prostate cancer cell line by its capability to transform rat fibroblasts. The PTI-1 mRNA has a very eccentric structure as the 5'UTR is similar to prokaryotic 23S rRNA, while the major open reading frame and the 3'UTR corresponds to a part of the mRNA encoding human translation elongation factor eEF1A1. Thus, the largest open reading frame encodes a truncated version of eEF1A1 lacking the first 67 amino acids, while having three unique N-terminal amino acids. Previously, the UTRs were shown to be a prerequisite for the transforming capacity of the PTI-1 transcript. In this study, we have investigated the possible role of the UTRs in regulating protein expression and localization. METHODS: The protein expression profiles of a number of PTI-1 mRNA variants were studied in vitro and in vivo. Furthermore, the oncogenic potentials of the same PTI-1 mRNAs were determined by monitoring the capacities of stably transfected cells expressing these mRNAs to induce tumors in nude mice and form foci in cell culture. Finally, the cellular localizations of PTI-1 proteins expressed from these mRNAs were determined by fluorescence microscopy. RESULTS: The PTI-1 mRNA was found to give rise to multiple protein products that potentially originate from translation initiation at downstream, inframe AUGs within the major open reading frame. At least one of the truncated protein variants was also found to be oncogenic. However, the UTRs did not appear to influence the amount and identities of these truncated protein products. In contrast, our localization studies showed that the UTRs of the transcript promote a nuclear localization of the encoded protein(s). CONCLUSIONS: Translation of the PTI-1 mRNA results in multiple protein products of which (a) truncated variant(s) may play a predominant role during cellular transformation. The PTI-1 UTRs did not seem to play a role in translation regulation, but appeared to contribute to a nuclear localization of the PTI-1 protein(s). This indicates that the PTI-1 protein(s) exert(s) its/their oncogenic function inside the nucleus.

2.
Biol Chem ; 389(9): 1239-49, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18713011

ABSTRACT

The ribosome is the macromolecular machine responsible for translating the genetic code into polypeptide chains. Despite impressive structural and kinetic studies of the translation process, a number of challenges remain with respect to understanding the dynamic properties of the translation apparatus. Single-molecule techniques hold the potential of characterizing the structural and mechanical properties of macromolecules during their functional cycles in real time. These techniques often necessitate the specific coupling of biologically active molecules to a surface. Here, we describe a procedure for such coupling of functionally active ribosomes that permits single-molecule studies of protein synthesis. Oxidation with NaIO4 at the 3' end of 23S rRNA and subsequent reaction with a biotin hydrazide produces biotinylated 70S ribosomes, which can be immobilized on a streptavidin-coated surface. The surface-attached ribosomes are fully active in poly(U) translation in vitro, synthesizing poly(Phe) at a rate of 3-6 peptide bonds/s per active ribosome at 37 degrees C. Specificity of binding of biotinylated ribosomes to a streptavidin-coated quartz surface was confirmed by observation of individual fluorescently labeled, biotinylated 70S ribosomes, using total internal reflection fluorescence microscopy. Functional interactions of the immobilized ribosomes with various components of the protein synthesis apparatus are shown by use of surface plasmon resonance.


Subject(s)
Biotin/analogs & derivatives , Protein Biosynthesis , Protein Modification, Translational , Ribosomes/metabolism , Streptavidin/metabolism , Biotin/metabolism , Biotinylation , Escherichia coli , Poly U/metabolism , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...