Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Article in English | MEDLINE | ID: mdl-38857145

ABSTRACT

A new approach for vascular super resolution imaging using the erythrocytes as targets (SURE imaging) is described and investigated. SURE imaging does not require fragile contrast agent bubbles, making it possible to use the maximum allowable mechanical index for ultrasound scanning for an increased penetration depth. A synthetic aperture ultrasound sequence was employed with 12 virtual sources using a 10 MHz GE L8-18i-D linear array hockey stick probe. The axial resolution was 1.20λ,(185.0µm) and the lateral resolution was 1.50λ,(231.3µm). Field IIpro simulations were conducted on 12.5 µm radius vessel pairs with varying separations. A vessel pair with a separation of 70 µm could be resolved, indicating a SURE image resolution below half a wavelength. A Verasonics research scanner was used for the in vivo experiments to scan the kidneys of Sprague-Dawley rats for up to 46 s to visualize their microvasculature by processing from 0.1 up to 45 s of data for SURE imaging, and for 46.8 s for super resolution (SR) imaging with a SonoVue contrast agent. Afterward, the renal vasculature was filled with the ex vivo micro-CT contrast agent Microfil, excised, and scanned in a micro-CT scanner at both a 22.6 µm voxel size for 11 hours, and for 20 hours in a 5 µm voxel size for validating the SURE images. Comparing the SURE and micro-CT images revealed that vessels with a diameter of 28 µm, five times smaller than the ultrasound wavelength, could be detected, and the dense grid of microvessels in the full kidney was shown for scan times between 1 to 10 s. The vessel structure in the cortex was also similar for the SURE and SR images. Fourier ring correlation indicated a resolution capability of 29 µm. SURE images are acquired in seconds rather than minutes without any patient preparation or contrast injection, making the method translatable to clinical use.

2.
Article in English | MEDLINE | ID: mdl-38857146

ABSTRACT

Super resolution ultrasound imaging using the erythrocytes (SURE) has recently been introduced. The method uses erythrocytes as targets instead of fragile microbubbles (MBs). The abundance of erythrocyte scatterers makes it possible to acquire SURE data in just a few seconds compared to several minutes in ultrasound localization microscopy (ULM) using MBs. A high number of scatterers can reduce the acquisition time, however, the tracking of uncorrelated and high-density scatterers is quite challenging. This paper hypothesizes that it is possible to detect and track erythrocytes as targets to obtain vascular flow images. A SURE tracking pipeline is used with modules for beamforming, recursive synthetic aperture imaging, motion estimation, echo canceling, peak detection, and recursive nearest neighbor tracker. The SURE tracking pipeline is capable of distinguishing the flow direction and separating tubes of a simulated Field II phantom with 125 to 25 µm wall-to-wall tube distances, as well as a 3D-printed hydrogel micro-flow phantom with 100 to 60 µm wall-to-wall channel distances. The comparison of an in-vivo SURE scan of a Sprague-Dawley rat kidney with ULM and micro-CT scans with voxel sizes of 26.5µm and 5µm demonstrated consistent findings. A microvascular structure composed of 16 vessels exhibited similarities across all imaging modalities. The flow direction and velocity profiles in the SURE scan were found to be concordant with those from ULM.

3.
Sci Rep ; 14(1): 10985, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744979

ABSTRACT

Several prognostic factors are known to influence survival for patients treated with IDH-wildtype glioblastoma, but unknown factors may remain. We aimed to investigate the prognostic implications of early postoperative MRI findings. A total of 187 glioblastoma patients treated with standard therapy were consecutively included. Patients either underwent a biopsy or surgery followed by an early postoperative MRI. Progression-free survival (PFS) and overall survival (OS) were analysed for known prognostic factors and MRI-derived candidate factors: resection status as defined by the response assessment in neuro-oncology (RANO)-working group (no contrast-enhancing residual tumour, non-measurable contrast-enhancing residual tumour, or measurable contrast-enhancing residual tumour) with biopsy as reference, contrast enhancement patterns (no enhancement, thin linear, thick linear, diffuse, nodular), and the presence of distant tumours. In the multivariate analysis, patients with no contrast-enhancing residual tumour or non-measurable contrast-enhancing residual tumour on the early postoperative MRI displayed a significantly improved progression-free survival compared with patients receiving only a biopsy. Only patients with non-measurable contrast-enhancing residual tumour showed improved overall survival in the multivariate analysis. Contrast enhancement patterns were not associated with survival. The presence of distant tumours was significantly associated with both poor progression-free survival and overall survival and should be considered incorporated into prognostic models.


Subject(s)
Brain Neoplasms , Glioblastoma , Magnetic Resonance Imaging , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Glioblastoma/mortality , Glioblastoma/pathology , Glioblastoma/therapy , Magnetic Resonance Imaging/methods , Female , Male , Middle Aged , Prognosis , Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Brain Neoplasms/mortality , Adult , Neoplasm, Residual/diagnostic imaging , Postoperative Period , Progression-Free Survival
4.
Ultraschall Med ; 2024 Mar 21.
Article in English, German | MEDLINE | ID: mdl-38513687

ABSTRACT

Simulation-based training (SBT) is increasingly acknowledged worldwide and has become a popular tool for ultrasound education. Ultrasound simulation involves the use of technology and software to create a virtual training setting. Simulation-based training allows healthcare professionals to learn, practice, and improve their ultrasound imaging skills in a safe learning-based environment. SBT can provide a realistic and focused learning experience that creates a deep and immersive understanding of the complexity of ultrasound, including enhancing knowledge and confidence in specific areas of interest. Abdominal ultrasound simulation is a tool to increase patient safety and can be a cost-efficient training method. In this paper, we provide an overview of various types of abdominal ultrasound simulators, and the benefits, and challenges of SBT. We also provide examples of how to develop SBT programs and learning strategies including mastery learning. In conclusion, the growing demand for medical imaging increases the need for healthcare professionals to start using ultrasound simulators in order to keep up with the rising standards.

5.
Diagnostics (Basel) ; 13(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37892017

ABSTRACT

Individuals with diabetes at risk of developing diabetic kidney disease (DKD) are challenging to identify using currently available clinical methods. Prognostic accuracy and initiation of treatment could be improved by a quantification of the renal microvascular rarefaction and the increased vascular tortuosity during the development of DKD. Super-resolution ultrasound (SRUS) imaging is an in vivo technique capable of visualizing blood vessels at sizes below 75 µm. This preclinical study aimed to investigate the alterations in renal blood vessels' density and tortuosity in a type 2 diabetes rat model, Zucker diabetic fatty (ZDF) rats, as a prediction of DKD. Lean age-matched Zucker rats were used as controls. A total of 36 rats were studied, subdivided into ages of 12, 22, and 40 weeks. Measured albuminuria indicated the early stage of DKD, and the SRUS was compared with the ex vivo micro-computed tomography (µCT) of the same kidneys. Assessed using the SRUS imaging, a significantly decreased cortical vascular density was detected in the ZDF rats from 22 weeks of age compared to the healthy controls, concomitant with a significantly increased albuminuria. Already by week 12, a trend towards a decreased cortical vascular density was found prior to the increased albuminuria. The quantified vascular density in µCT corresponded with the in vivo SRUS imaging, presenting a consistently lower vascular density in the ZDF rats. Regarding vessel tortuosity, an overall trend towards an increased tortuosity was present in the ZDF rats. SRUS shows promise for becoming an additional tool for monitoring and prognosing DKD. In the future, large-scale animal studies and human trials are needed for confirmation.

6.
Endosc Ultrasound ; 12(3): 311-318, 2023.
Article in English | MEDLINE | ID: mdl-37693111

ABSTRACT

Simulation has been shown to improve clinical learning outcomes, speed up the learning process, and improve trainee confidence, while taking the pressure off initial face-to-face patient clinical areas. The second part of The World Federation for Ultrasound in Medicine and Biology state-of-the-art paper on the use of simulators provides a general approach on the practical implementation. The importance of needs assessment before developing a simulation-based training program is outlined. We describe the current practical implementation and critically analyze how simulators can be integrated into complex task scenarios to train small or large groups. A wide range of simulation equipment is available especially for those seeking interventional ultrasound training, ranging from animal tissue models, simple synthetic phantoms, to sophisticated high-fidelity simulation platforms using virtual reality. Virtual reality simulators provide feedback and thereby allow trainees to not only to practice their motor skills and hand eye coordination but also to interact with the simulator. Future developments will integrate more elements of automated assessment and artificial intelligence, thereby enabling enhanced realistic training experience and improving skill transfer into clinical practice.

7.
Diagnostics (Basel) ; 13(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37371006

ABSTRACT

We conducted this Systematic Review to create an overview of the currently existing Artificial Intelligence (AI) methods for Magnetic Resonance Diffusion-Weighted Imaging (DWI)/Fluid-Attenuated Inversion Recovery (FLAIR)-mismatch assessment and to determine how well DWI/FLAIR mismatch algorithms perform compared to domain experts. We searched PubMed Medline, Ovid Embase, Scopus, Web of Science, Cochrane, and IEEE Xplore literature databases for relevant studies published between 1 January 2017 and 20 November 2022, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We assessed the included studies using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Five studies fit the scope of this review. The area under the curve ranged from 0.74 to 0.90. The sensitivity and specificity ranged from 0.70 to 0.85 and 0.74 to 0.84, respectively. Negative predictive value, positive predictive value, and accuracy ranged from 0.55 to 0.82, 0.74 to 0.91, and 0.73 to 0.83, respectively. In a binary classification of ±4.5 h from stroke onset, the surveyed AI methods performed equivalent to or even better than domain experts. However, using the relation between time since stroke onset (TSS) and increasing visibility of FLAIR hyperintensity lesions is not recommended for the determination of TSS within the first 4.5 h. An AI algorithm on DWI/FLAIR mismatch assessment focused on treatment eligibility, outcome prediction, and consideration of patient-specific data could potentially increase the proportion of stroke patients with unknown onset who could be treated with thrombolysis.

8.
Diagnostics (Basel) ; 13(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36980376

ABSTRACT

A chest X-ray report is a communicative tool and can be used as data for developing artificial intelligence-based decision support systems. For both, consistent understanding and labeling is important. Our aim was to investigate how readers would comprehend and annotate 200 chest X-ray reports. Reports written between 1 January 2015 and 11 March 2022 were selected based on search words. Annotators included three board-certified radiologists, two trained radiologists (physicians), two radiographers (radiological technicians), a non-radiological physician, and a medical student. Consensus labels by two or more of the experienced radiologists were considered "gold standard". Matthew's correlation coefficient (MCC) was calculated to assess annotation performance, and descriptive statistics were used to assess agreement between individual annotators and labels. The intermediate radiologist had the best correlation to "gold standard" (MCC 0.77). This was followed by the novice radiologist and medical student (MCC 0.71 for both), the novice radiographer (MCC 0.65), non-radiological physician (MCC 0.64), and experienced radiographer (MCC 0.57). Our findings showed that for developing an artificial intelligence-based support system, if trained radiologists are not available, annotations from non-radiological annotators with basic and general knowledge may be more aligned with radiologists compared to annotations from sub-specialized medical staff, if their sub-specialization is outside of diagnostic radiology.

9.
Diagnostics (Basel) ; 13(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36832282

ABSTRACT

An early postoperative MRI is recommended following Glioblastoma surgery. This retrospective, observational study aimed to investigate the timing of an early postoperative MRI among 311 patients. The patterns of the contrast enhancement (thin linear, thick linear, nodular, and diffuse) and time from surgery to the early postoperative MRI were recorded. The primary endpoint was the frequencies of the different contrast enhancements within and beyond the 48-h from surgery. The time dependence of the resection status and the clinical parameters were analysed as well. The frequency of the thin linear contrast enhancements significantly increased from 99/183 (50.8%) within 48-h post-surgery to 56/81 (69.1%) beyond 48-h post-surgery. Similarly, MRI scans with no contrast enhancements significantly declined from 41/183 (22.4%) within 48-h post-surgery to 7/81 (8.6%) beyond 48-h post-surgery. No significant differences were found for the other types of contrast enhancements and the results were robust in relation to the choice of categorisation of the postoperative periods. Both the resection status and the clinical parameters were not statistically different in patients with an MRI performed before and after 48 h. The findings suggest that surgically induced contrast enhancements are less frequent when an early postoperative MRI is performed earlier than 48-h, supporting the recommendation of a 48-h window for an early postoperative MRI.

10.
Diagnostics (Basel) ; 13(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36766468

ABSTRACT

In the context of brain tumour response assessment, deep learning-based three-dimensional (3D) tumour segmentation has shown potential to enter the routine radiological workflow. The purpose of the present study was to perform an external evaluation of a state-of-the-art deep learning 3D brain tumour segmentation algorithm (HD-GLIO) on an independent cohort of consecutive, post-operative patients. For 66 consecutive magnetic resonance imaging examinations, we compared delineations of contrast-enhancing (CE) tumour lesions and non-enhancing T2/FLAIR hyperintense abnormality (NE) lesions by the HD-GLIO algorithm and radiologists using Dice similarity coefficients (Dice). Volume agreement was assessed using concordance correlation coefficients (CCCs) and Bland-Altman plots. The algorithm performed very well regarding the segmentation of NE volumes (median Dice = 0.79) and CE tumour volumes larger than 1.0 cm3 (median Dice = 0.86). If considering all cases with CE tumour lesions, the performance dropped significantly (median Dice = 0.40). Volume agreement was excellent with CCCs of 0.997 (CE tumour volumes) and 0.922 (NE volumes). The findings have implications for the application of the HD-GLIO algorithm in the routine radiological workflow where small contrast-enhancing tumours will constitute a considerable share of the follow-up cases. Our study underlines that independent validations on clinical datasets are key to asserting the robustness of deep learning algorithms.

11.
Endosc Ultrasound ; 12(1): 38-49, 2023.
Article in English | MEDLINE | ID: mdl-36629173

ABSTRACT

Simulation has been shown to improve clinical learning outcomes, speed up the learning process and improve learner confidence, whilst initially taking pressure off busy clinical lists. The World Federation for Ultrasound in Medicine and Biology (WFUMB) state of the art paper on the use of simulators in ultrasound education introduces ultrasound simulation, its advantages and challenges. It describes different simulator types, including low and high-fidelity simulators, the requirements and technical aspects of simulators, followed by the clinical applications of ultrasound simulation. The paper discusses the role of ultrasound simulation in ultrasound clinical training, referencing established literature. Requirements for successful ultrasound simulation acceptance into educational structures are explored. Despite being in its infancy, ultrasound simulation already offers a wide range of training opportunities and likely holds the key to a broader point of care ultrasound education for medical students, practicing doctors, and other health care professionals. Despite the drawbacks of simulation, there are also many advantages, which are expanding rapidly as the technology evolves.

12.
Diagnostics (Basel) ; 13(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36673020

ABSTRACT

Intermetatarsal bursitis (IMB) is an inflammation of the intermetatarsal bursas. The condition causes forefoot pain with symptoms similar to those of Morton's neuroma (MN). Some studies suggest that IMB is a contributing factor to the development of MN, while others describe the condition as a differential diagnosis. Among patients with rheumatic diseases, IMB is frequent, but the scope is yet to be understood. The aim of this paper was to investigate the diagnostic considerations of IMB and its role in metatarsalgia by a systematic review approach. We identified studies about IMB by searching the electronic databases Pubmed, Embase, Cochrane Library, and Web of Science in September 2022. Of 1362 titles, 28 met the inclusion criteria. They were subdivided according to topic: anatomical studies (n = 3), studies of patients with metatarsalgia (n = 10), and studies of patients with rheumatic diseases (n = 15). We conclude that IMB should be considered a cause of pain in patients with metatarsalgia and patients with rheumatic diseases. For patients presenting with spreading toes/V-sign, IMB should be a diagnostic consideration. Future diagnostic studies about MN should take care to apply a protocol that is able to differ IMB from MN, to achieve a better understanding of their respective role in forefoot pain.

13.
Diagnostics (Basel) ; 14(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38201378

ABSTRACT

DWI/FLAIR mismatch assessment for ischemic stroke patients shows promising results in determining if patients are eligible for recombinant tissue-type plasminogen activator (r-tPA) treatment. However, the mismatch criteria suffer from two major issues: binary classification of a non-binary problem and the subjectiveness of the assessor. In this article, we present a simple automatic method for segmenting stroke-related parenchymal hyperintensities on FLAIR, allowing for an automatic and continuous DWI/FLAIR mismatch assessment. We further show that our method's segmentations have comparable inter-rater agreement (DICE 0.820, SD 0.12) compared to that of two neuro-radiologists (DICE 0.856, SD 0.07), that our method appears robust to hyper-parameter choices (suggesting good generalizability), and lastly, that our methods continuous DWI/FLAIR mismatch assessment correlates to mismatch assessments made for a cohort of wake-up stroke patients at hospital submission. The proposed method shows promising results in automating the segmentation of parenchymal hyperintensity within ischemic stroke lesions and could help reduce inter-observer variability of DWI/FLAIR mismatch assessment performed in clinical environments as well as offer a continuous assessment instead of the current binary one.

15.
Diagnostics (Basel) ; 12(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36553118

ABSTRACT

Consistent annotation of data is a prerequisite for the successful training and testing of artificial intelligence-based decision support systems in radiology. This can be obtained by standardizing terminology when annotating diagnostic images. The purpose of this study was to evaluate the annotation consistency among radiologists when using a novel diagnostic labeling scheme for chest X-rays. Six radiologists with experience ranging from one to sixteen years, annotated a set of 100 fully anonymized chest X-rays. The blinded radiologists annotated on two separate occasions. Statistical analyses were done using Randolph's kappa and PABAK, and the proportions of specific agreements were calculated. Fair-to-excellent agreement was found for all labels among the annotators (Randolph's Kappa, 0.40-0.99). The PABAK ranged from 0.12 to 1 for the two-reader inter-rater agreement and 0.26 to 1 for the intra-rater agreement. Descriptive and broad labels achieved the highest proportion of positive agreement in both the inter- and intra-reader analyses. Annotating findings with specific, interpretive labels were found to be difficult for less experienced radiologists. Annotating images with descriptive labels may increase agreement between radiologists with different experience levels compared to annotation with interpretive labels.

16.
Comput Methods Programs Biomed ; 226: 107140, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36162245

ABSTRACT

BACKGROUND AND OBJECTIVE: population-based finite element analysis of hip joints allows us to understand the effect of inter-subject variability on simulation results. Developing large subject-specific population models is challenging and requires extensive manual effort. Thus, the anatomical representations are often subjected to simplification. The discretized geometries do not guarantee conformity in shared interfaces, leading to complications in setting up simulations. Additionally, these models are not openly accessible, challenging reproducibility. Our work provides multiple subject-specific hip joint finite element models and a novel semi-automated modeling workflow. METHODS: we reconstruct 11 healthy subject-specific models, including the sacrum, the paired pelvic bones, the paired proximal femurs, the paired hip joints, the paired sacroiliac joints, and the pubic symphysis. The bones are derived from CT scans, and the cartilages are generated from the bone geometries. We generate the whole complex's volume mesh with conforming interfaces. Our models are evaluated using both mesh quality metrics and simulation experiments. RESULTS: the geometry of all the models are inspected by our clinical expert and show high-quality discretization with accurate geometries. The simulations produce smooth stress patterns, and the variance among the subjects highlights the effect of inter-subject variability and asymmetry in the predicted results. CONCLUSIONS: our work is one of the largest model repositories with respect to the number of subjects and regions of interest in the hip joint area. Our detailed research data, including the clinical images, the segmentation label maps, the finite element models, and software tools, are openly accessible on GitHub and the link is provided in Moshfeghifar et al.(2022)[1]. Our aim is to empower clinical researchers to have free access to verified and reproducible models. In future work, we aim to add additional structures to our models.


Subject(s)
Hip Joint , Pelvis , Humans , Finite Element Analysis , Reproducibility of Results , Hip Joint/diagnostic imaging , Computer Simulation , Pelvis/diagnostic imaging , Biomechanical Phenomena
17.
Diagnostics (Basel) ; 12(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36010228

ABSTRACT

We conducted a systematic review of the current status of machine learning (ML) algorithms' ability to identify multiple brain diseases, and we evaluated their applicability for improving existing scan acquisition and interpretation workflows. PubMed Medline, Ovid Embase, Scopus, Web of Science, and IEEE Xplore literature databases were searched for relevant studies published between January 2017 and February 2022. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. The applicability of ML algorithms for successful workflow improvement was qualitatively assessed based on the satisfaction of three clinical requirements. A total of 19 studies were included for qualitative synthesis. The included studies performed classification tasks (n = 12) and segmentation tasks (n = 7). For classification algorithms, the area under the receiver operating characteristic curve (AUC) ranged from 0.765 to 0.997, while accuracy, sensitivity, and specificity ranged from 80% to 100%, 72% to 100%, and 65% to 100%, respectively. For segmentation algorithms, the Dice coefficient ranged from 0.300 to 0.912. No studies satisfied all clinical requirements for successful workflow improvements due to key limitations pertaining to the study's design, study data, reference standards, and performance reporting. Standardized reporting guidelines tailored for ML in radiology, prospective study designs, and multi-site testing could help alleviate this.

18.
Diagnostics (Basel) ; 12(7)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35885531

ABSTRACT

Obesity is a risk factor of chronic kidney disease (CKD), leading to alterations in the renal vascular structure. This study tested if renal vascular density and tortuosity was quantifiable in vivo in obese rats using microbubble-based super-resolution ultrasound imaging. The kidneys of two 11-week-old and two 20-week-old male obese Zucker rats were compared with age-matched male lean Zucker rats. The super-resolution ultrasound images were manually divided into inner medulla, outer medulla, and cortex, and each area was subdivided into arteries and veins. We quantified vascular density and tortuosity, number of detected microbubbles, and generated tracks. For comparison, we assessed glomerular filtration rate, albumin/creatinine ratio, and renal histology to evaluate CKD. The number of detected microbubbles and generated tracks varied between animals and significantly affected quantification of vessel density. In areas with a comparable number of tracks, density increased in the obese animals, concomitant with a decrease in glomerular filtration rate and an increase in albumin/creatinine ratio, but without any pathology in the histological staining. The results indicate that super-resolution ultrasound imaging can be used to quantify structural alterations in the renal vasculature. Techniques to generate more comparable number of microbubble tracks and confirmation of the findings in larger-scale studies are needed.

19.
Diagnostics (Basel) ; 12(7)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35885639

ABSTRACT

INTRODUCTION: Comparing imaging examinations with those previously obtained is considered mandatory in imaging guidelines. To our knowledge, no studies are available on neither the influence, nor the sequence, of prior imaging and reports on diagnostic accuracy using biopsy as the reference standard. Such data are important to minimize diagnostic errors and to improve the preparation of diagnostic imaging guidelines. The aim of our study was to provide such data. MATERIALS AND METHODS: A retrospective cohort of 216 consecutive skeletal biopsies from patients with at least 2 different imaging modalities (X-ray, CT and MRI) performed within 6 months of biopsy was identified. The diagnostic accuracy of the individual imaging modality was assessed. Finally, the possible influence of the sequence of imaging modalities was investigated. RESULTS: No significant difference in the accuracy of the imaging modalities was shown, being preceded by another imaging modality or not. However, the sequence analyses indicate sequential biases, particularly if MRI was the first imaging modality. CONCLUSION: The sequence of the imaging modalities seems to influence the diagnostic accuracy against a pathology reference standard. Further studies are needed to establish evidence-based guidelines for the strategy of using previous imaging and reports to improve diagnostic accuracy.

20.
Article in English | MEDLINE | ID: mdl-35839193

ABSTRACT

Row-column (RC) arrays have the potential to yield full 3-D ultrasound imaging with a greatly reduced number of elements compared to fully populated arrays. They, however, have several challenges due to their special geometry. This review article summarizes the current literature for RC imaging and demonstrates that full anatomic and functional imaging can attain a high quality using synthetic aperture (SA) sequences and modified delay-and-sum beamforming. Resolution can approach the diffraction limit with an isotropic resolution of half a wavelength with low sidelobe levels, and the field of view can be expanded by using convex or lensed RC probes. GPU beamforming allows for three orthogonal planes to be beamformed at 30 Hz, providing near real-time imaging ideal for positioning the probe and improving the operator's workflow. Functional imaging is also attainable using transverse oscillation and dedicated SA sequence for tensor velocity imaging for revealing the full 3-D velocity vector as a function of spatial position and time for both blood velocity and tissue motion estimation. Using RC arrays with commercial contrast agents can reveal super-resolution imaging (SRI) with isotropic resolution below [Formula: see text]. RC arrays can, thus, yield full 3-D imaging at high resolution, contrast, and volumetric rates for both anatomic and functional imaging with the same number of receive channels as current commercial 1-D arrays.


Subject(s)
Contrast Media , Motion , Phantoms, Imaging , Ultrasonography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...