Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
RSC Adv ; 9(12): 6620-6626, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518464

ABSTRACT

We have measured the metastable decay of protonated, ammonia-doped, deuterated water clusters produced in an electrospray source, d n -NH4 +(H2O)3, n = 0-6. The mass spectra show a very strong odd-even effect, consistent with a low degree of scrambling of the hydrogen bound to water and to the ammonia. The relative evaporation rate constant for light water was almost twice the one for heavy water, with the rate for mixed protium-deuterium water molecule intermediate between these two values.

2.
J Chem Phys ; 135(8): 084304, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21895182

ABSTRACT

The loss of C(2)H(2) is a low activation energy dissociation channel for anthracene (C(14)H(10)) and acridine (C(13)H(9)N) cations. For the latter ion another prominent fragmentation pathway is the loss of HCN. We have studied these two dissociation channels by collision induced dissociation experiments of 50 keV anthracene cations and protonated acridine, both produced by electrospray ionization, in collisions with a neutral xenon target. In addition, we have carried out density functional theory calculations on possible reaction pathways for the loss of C(2)H(2) and HCN. The mass spectra display features of multi-step processes, and for protonated acridine the dominant first step process is the loss of a hydrogen from the N site, which then leads to C(2)H(2)/HCN loss from the acridine cation. With our calculations we have identified three pathways for the loss of C(2)H(2) from the anthracene cation, with three different cationic products: 2-ethynylnaphthalene, biphenylene, and acenaphthylene. The third product is the one with the overall lowest dissociation energy barrier. For the acridine cation our calculated pathway for the loss of C(2)H(2) leads to the 3-ethynylquinoline cation, and the loss of HCN leads to the biphenylene cation. Isomerization plays an important role in the formation of the non-ethynyl containing products. All calculated fragmentation pathways should be accessible in the present experiment due to substantial energy deposition in the collisions.

3.
J Chem Phys ; 131(1): 014301, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19586099

ABSTRACT

We present a detailed study of the electronic structure and the stability of C(60) dianions in the gas phase. Monoanions were extracted from a plasma source and converted to dianions by electron transfer in a Na vapor cell. The dianions were then stored in an electrostatic ring, and their near-infrared absorption spectrum was measured by observation of laser induced electron detachment. From the time dependence of the detachment after photon absorption, we conclude that the reaction has contributions from both direct electron tunneling to the continuum and vibrationally assisted tunneling after internal conversion. This implies that the height of the Coulomb barrier confining the attached electrons is at least approximately 1.5 eV. For C(60)(2-) ions in solution electron spin resonance measurements have indicated a singlet ground state, and from the similarity of the absorption spectra we conclude that also the ground state of isolated C(60)(2-) ions is singlet. The observed spectrum corresponds to an electronic transition from a t(1u) lowest unoccupied molecular orbital (LUMO) of C(60) to the t(1g) LUMO+1 level. The electronic levels of the dianion are split due to Jahn-Teller coupling to quadrupole deformations of the molecule, and a main absorption band at 10,723 cm(-1) corresponds to a transition between the Jahn-Teller ground states. Also transitions from pseudorotational states with 200 cm(-1) and (probably) 420 cm(-1) excitation are observed. We argue that a very broad absorption band from about 11,500 cm(-1) to 13,500 cm(-1) consists of transitions to so-called cone states, which are Jahn-Teller states on a higher potential-energy surface, stabilized by a pseudorotational angular momentum barrier. A previously observed, high-lying absorption band for C(60)(-) may also be a transition to a cone state.

4.
J Chem Phys ; 130(22): 224308, 2009 Jun 14.
Article in English | MEDLINE | ID: mdl-19530769

ABSTRACT

We report on evaporation studies on positively charged water clusters (H(+)(H(2)O)(N)) and negatively charged mixed clusters (X(-)(H(2)O)(N)) with a small core ion X (X=O(2), CO(3), or NO(3)), in the size range N=5-300. The clusters were produced by corona discharge in ambient air, accelerated to 50 keV and mass selected by an electromagnet. The loss of monomers during the subsequent 3.4 m free flight was recorded. The average losses are proportional to the clusters' heat capacities and this allowed the determination of size-dependent heat capacities. The values are found to increase almost linearly with clusters size for both species, with a rate of 6k(B)-8k(B) per added molecule. For clusters with N<21 the heat capacities per molecule are lower but the incremental increase higher. For N>21 the values are intermediate between the bulk liquid and the solid water 0 degrees C values.

5.
J Am Soc Mass Spectrom ; 17(2): 275-9, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16434210

ABSTRACT

Amino acid clusters have been studied by several groups and most notably magic number clusters and chiral recognition have been reported. In this work, we have studied the formation of amino acid clusters by electrospray ionization (ESI) and their stability by high-energy collision-induced dissociation (CID). Appearance sizes were determined for multiply charged clusters where the charge is either due to protons or to sodium ions. Finally, we conclude that chiral selectivity plays an important role in cluster formation but seems to be of minor importance for the fragmentation of mixed clusters.


Subject(s)
Amino Acids/chemistry , Algorithms , Helium/chemistry , Molecular Conformation , Protons , Serine/chemistry , Sodium/chemistry , Spectrometry, Mass, Electrospray Ionization , Stereoisomerism
6.
Phys Rev Lett ; 94(5): 053002, 2005 Feb 11.
Article in English | MEDLINE | ID: mdl-15783634

ABSTRACT

We have measured the near-infrared absorption spectrum for isolated C60- ions at room temperature. Two bands, at 9145 cm(-1) and 10460 cm(-1), have been identified in addition to the main absorption band at 9382 cm(-1), seen also at low temperature in a matrix. An interpretation based on the theory of dynamic Jahn-Teller effects is proposed.

7.
Phys Rev Lett ; 93(20): 203201, 2004 Nov 12.
Article in English | MEDLINE | ID: mdl-15600921

ABSTRACT

Electron scattering on stored Pt(CN)2-4 and Pt(CN)2-6 centrosymmetric molecular dianions has been performed at the electrostatic storage ring ELISA. The thresholds for production of neutral particles by electron bombardment were found to be 17.2 and 18.7 eV, respectively. The relatively high thresholds reflect the strong Coulomb repulsion in the incoming channel as well as a high energetic stability of the target electrons. A trianion resonance was identified with a positive energy of 17.0 eV for the Pt(CN)2-4 square-planar complex, while three trianion resonances were identified for the Pt(CN)2-6 octahedral complex with positive energies of 15.3, 18.1, and 20.1 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...