Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10236, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353517

ABSTRACT

Two simulated gouges (a pure quartz and a quartz-muscovite mixture) were experimentally deformed in a ring shear apparatus at a constant low velocity under hydrothermal conditions favourable for dissolution-precipitation processes. Microstructural analysis using scanning electron microscope cathodoluminescence imaging and cathodoluminescence spectroscopy combined with chemical analysis showed that quartz dissolution and precipitation occurred in both experiments. The starting materials and deformation conditions were chosen so that dissolution-precipitation microstructures could be unambiguously identified from their cathodoluminescence signal. Precipitated quartz was observed as blue luminescent fracture fills and overgrowths with increased Al content relative to the original quartz. In the pure quartz gouge, most of the shear deformation was localized on a boundary-parallel slip surface. Sealing of fractures in a pulverized zone directly adjacent to the slip surface may have helped keeping the deformation localized. In the quartz-muscovite mixture, some evidence was observed of shear-accommodating precipitation of quartz in strain shadows, but predominantly in fractures, elongating the original grains. Precipitation of quartz in fractures implies that the length scale of diffusive mass transfer in frictional-viscous flow is shorter than the length of the quartz domains. Additionally, fracturing might play a more important role than generally assumed. Our results show that cathodoluminescence, especially combined with chemical analysis, is a powerful tool in microstructural analyses of experimentally deformed quartz-bearing material and visualizing quartz precipitation.


Subject(s)
Aluminum Silicates , Quartz , Spectrum Analysis
2.
Geophys Res Lett ; 48(11): e2021GL092417, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34219831

ABSTRACT

Rock materials show dramatic dynamic weakening in large-displacement (m), high-velocity (∼1 m/s) friction experiments, providing a mechanism for the generation of large, natural earthquakes. However, whether such weakening occurs during induced M3-4 earthquakes (dm displacements) is unknown. We performed rotary-shear experiments on simulated fault gouges prepared from the source-, reservoir- and caprock formations present in the seismogenic Groningen gas field (Netherlands). Water-saturated gouges were subjected to a slip pulse reaching a peak circumferential velocity of 1.2-1.7 m/s and total displacements of 13-20 cm, at 2.5-20 MPa normal stress. The results show 22%-81% dynamic weakening within 5-12 cm of slip, depending on normal stress and gouge composition. At 20 MPa normal stress, dynamic weakening from peak friction coefficients of 0.4-0.9 to 0.19-0.27 was observed, probably through thermal pressurization. We infer that similar effects play a key role during induced seismic slip on faults in the Groningen and other reservoir systems.

3.
J Geophys Res Solid Earth ; 125(4): e2019JB018567, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32714730

ABSTRACT

The maximum fault strength and rate of interseismic fault strengthening ("healing") are of great interest to earthquake hazard assessment studies, as they directly relate to event magnitude and recurrence time. Previous laboratory studies have revealed two distinct frictional healing behaviors, referred to as Dieterich-type and non-Dieterich-type healing. These are characterized by, respectively, log-linear and power-law increase in the strength change with time. To date, there is no physical explanation for the frictional behavior of fault gouges that unifies these seemingly inconsistent observations. Using a microphysical friction model previously developed for granular fault gouges, we investigate fault strengthening analytically and numerically under boundary conditions corresponding to laboratory slide-hold-slide tests. We find that both types of healing can be explained by considering the difference in grain contact creep rheology at short and long time scales. Under hydrothermal conditions favorable for pressure solution creep, healing exhibits a power-law evolution with hold time, with an exponent of ~1/3, and an "apparent" cutoff time (α) of hundreds of seconds. Under room-humidity conditions, where grain contact deformation exhibits only a weak strain-rate dependence, the predicted healing also exhibits a power-law dependence on hold time, but it can be approximated by a log-linear relation with α of a few seconds. We derive analytical expressions for frictional healing parameters (i.e., healing rate, cutoff time, and maximum healing), of which the predictions are consistent with numerical implementation of the model. Finally, we apply the microphysical model to small fault patches on a natural carbonate fault and interpret the restrengthening during seismic cycles.

4.
J Geophys Res Solid Earth ; 125(7): e2019JB018790, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32728508

ABSTRACT

We investigated the frictional strength recovery (healing) and subsequent reactivation and slip-weakening behavior of simulated fault gouges derived from key stratigraphic units in the seismogenic Groningen gas field (N. E. Netherlands). Direct-shear, slide-hold-slide (SHS) experiments were performed at in situ conditions of 100 °C, 40 MPa effective normal stress and 10-15 MPa pore fluid pressure (synthetic formation brine). Sheared gouges were allowed to heal for periods up to 100 days before subsequent reshearing. The initial coefficient of (steady) sliding friction µ was highest in the Basal Zechstein caprock (µ = 0.65 ± 0.02) and Slochteren sandstone reservoir (µ = 0.61 ± 0.02) gouges, and the lowest in the Ten Boer claystone at the reservoir top (µ = 0.38 ± 0.01) and in the Carboniferous shale substrate (µ ≈ 0.45). Healing and subsequent reactivation led to a marked increase (∆µ) in (static) friction coefficient of up to ~0.16 in Basal Zechstein and ~0.07 in Slochteren sandstone gouges for the longest hold periods investigated, followed by a sharp strength drop (up to ~25%) and slip-weakening trajectory. By contrast, the Ten Boer and Carboniferous gouges showed virtually no healing or strength drop. Healing rates in the Basal Zechstein and Slochteren sandstone gouges were significantly affected by the stiffness of different machines used, in line with the Ruina slip law, and with a microphysical model for gouge healing. Our results point to marked stratigraphic variation in healed frictional strength and healing rate of faults in the Groningen system, and high seismogenic potential of healed faults cutting the reservoir and Basal Zechstein caprock units, upon reactivation.

5.
Nat Commun ; 8(1): 1645, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29158513

ABSTRACT

Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.

6.
Science ; 354(6318): 1380-1381, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27980173
SELECTION OF CITATIONS
SEARCH DETAIL