Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 34(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856735

ABSTRACT

We present and demonstrate a method to produce quantitative and qualitative descriptions of transient dynamics from empirical data, with the purpose of analyzing a novel transient discovered in liquid crystal electroconvection. By constructing a tensor bundle around an exemplar transient and creating a chart at every step aligned with the direction of propagation, we show that the Jacobian estimation problem can be reduced by a single dimension, relaxing data requirements and clarifying results. We apply this analysis to identify the onset of a boundary crisis in a predator-prey model. The resulting tensor bundle estimated from image data taken during a dynamical phase transition in a nematic liquid crystal details the behavior of the system along that trajectory, allowing topological analysis. Using this method, we quantify a saddle point in the phase space that drives the initial dynamics during a sudden increase in the driving voltage.

2.
Air Qual Atmos Health ; 14(10): 1549-1570, 2021.
Article in English | MEDLINE | ID: mdl-34025821

ABSTRACT

We have investigated the impact of reduced emissions due to COVID-19 lockdown measures in spring 2020 on air quality in Canada's four largest cities: Toronto, Montreal, Vancouver, and Calgary. Observed daily concentrations of NO2, PM2.5, and O3 during a "pre-lockdown" period (15 February-14 March 2020) and a "lockdown" period (22 March-2 May 2020), when lockdown measures were in full force everywhere in Canada, were compared to the same periods in the previous decade (2010-2019). Higher-than-usual seasonal declines in mean daily NO2 were observed for the pre-lockdown to lockdown periods in 2020. For PM2.5, Montreal was the only city with a higher-than-usual seasonal decline, whereas for O3 all four cities remained within the previous decadal range. In order to isolate the impact of lockdown-related emission changes from other factors such as seasonal changes in meteorology and emissions and meteorological variability, two emission scenarios were performed with the GEM-MACH air quality model. The first was a Business-As-Usual (BAU) scenario with baseline emissions and the second was a more realistic simulation with estimated COVID-19 lockdown emissions. NO2 surface concentrations for the COVID-19 emission scenario decreased by 31 to 34% on average relative to the BAU scenario in the four metropolitan areas. Lower decreases ranging from 6 to 17% were predicted for PM2.5. O3 surface concentrations, on the other hand, showed increases up to a maximum of 21% close to city centers versus slight decreases over the suburbs, but Ox (odd oxygen), like NO2 and PM2.5, decreased as expected over these cities. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11869-021-01039-1.

3.
Appl Opt ; 51(32): 7853-7, 2012 Nov 10.
Article in English | MEDLINE | ID: mdl-23142899

ABSTRACT

Straightforward novel methods for stabilizing, tuning, and controlling a twin Mach-Zehnder interferometer for the purpose of observing a subtle dynamical quantum nonlocality effect in a recent optical experiment are presented and discussed. Weak measurements were required for observing a subtle quantum dynamical nonlocality effect that reveals itself in a change of a weak value. Consequently, emphasis is placed upon describing the approaches to apparatus stabilization and interaction strength control between photons and the apparatus. The details discussed in this paper should be of general interest to experimentalists engaging in weak measurement and weak value research.

4.
Environ Res ; 95(3): 247-65, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15220060

ABSTRACT

A special version of the NOAA HYSPLIT_4 model has been developed and used to estimate the atmospheric fate and transport of mercury in a North American modeling domain. Spatial and chemical interpolation procedures were used to expand the modeling results and provide estimates of the contribution of each source in a 1996 anthropogenic US/Canadian emissions inventory to atmospheric mercury deposition to the Great Lakes. While there are uncertainties in the emissions inventories and ambient data suitable for model evaluation are scarce, model results were found to be reasonably consistent with wet deposition measurements in the Great Lakes region and with independent measurement-based estimates of deposition to Lake Michigan. Sources up to 2000 km from the Great Lakes contributed significant amounts of mercury through atmospheric transport and deposition. While there were significant contributions from incineration and metallurgical sources, coal combustion was generally found to be the largest contributor to atmospheric mercury deposition to the Great Lakes.


Subject(s)
Environmental Pollutants/analysis , Mercury/analysis , Models, Theoretical , Air Movements , Coal , Great Lakes Region , Incineration , Mercury/chemistry , Metallurgy
5.
Environ Res ; 95(3): 266-71, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15220061

ABSTRACT

North American pollutant release and transfer registries have been continuously developing with an eye to understanding source/receptor relationships and ensuring that the polluter-paid principle is applied to the appropriate parties. The potential contribution of mercury to the Great Lakes Basin arising from the rerelease of historic mercury pollution from contaminated aquatic and terrestrial media is poorly understood and the subject of concern. Although a considerable amount of data may be available on the atmospheric component of mercury releases to the Basin, further inventory work is needed to quantify the rerelease of the historic mercury. Much of the related existing inventory information is either not derived from direct measurement or not bounded by a mass-balance accounting. Critical to this determination is an increased confidence in the inventories of mercury from past and current practices. This may be enhanced through comprehensive and thorough surveys of contributions from specific products and their life-cycle assessments. An even greater challenge is to determine the bioavailability of the mercury emanating from land-based sources and from aquatic media. This paper describes the interplay among the sources and receptors of mercury and provides a quantitative assessment of current Canadian contributions of mercury as a contaminant to the Great Lakes. Recommendations for improved assessments are provided.


Subject(s)
Environmental Monitoring/statistics & numerical data , Environmental Pollutants/analysis , Mercury/analysis , Registries/standards , Biological Availability , Canada , Data Collection
6.
Environ Sci Technol ; 36(22): 4831-45, 2002 Nov 15.
Article in English | MEDLINE | ID: mdl-12487307

ABSTRACT

Atmospheric deposition is a significant loading pathway for polychlorinated dibenzo-p-dioxins and dibenzofurans (dioxin) to the Great Lakes. An innovative approach using NOAA's HYSPLIT atmospheric fate and transport model was developed to estimate the 1996 dioxin contribution to each lake from each of 5,700 point sources and 42,600 area sources in a U.S./Canadian air emissions inventory. These unusually detailed source-receptor modeling results show that deposition to each lake arises from a broad geographical region, with significant contributions from up to 2,000 km away. The source categories contributing most significantly to 1996 dioxin deposition appear to be municipal waste incineration, iron sintering, medical waste incineration, and cement kilns burning hazardous waste. Model-predicted air concentrations and deposition fluxes were consistent with ambient measurement data, within the uncertainties in each, but there may be a moderate tendency toward underestimation using midrange emissions estimates. The most likely reason for this tendency appears to be missing or underestimated emissions sources, but in-situ atmospheric formation of octachlorinated dibenzo-p-dioxin (OCDD) and heptachlorinated dibenzo-p-dioxin (HpCDD) may have also contributed. Despite uncertainties, the findings regarding the relative importance of different sources types and source regions appear to be relatively robust and may be useful in prioritizing pollution prevention efforts.


Subject(s)
Air Pollutants/analysis , Benzofurans/analysis , Models, Theoretical , Polychlorinated Dibenzodioxins/analogs & derivatives , Polychlorinated Dibenzodioxins/analysis , Soil Pollutants/analysis , Air Movements , Databases, Factual , Dibenzofurans, Polychlorinated , Great Lakes Region , Hazardous Waste
SELECTION OF CITATIONS
SEARCH DETAIL
...