Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Can J Microbiol ; 47(11): 969-78, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11766057

ABSTRACT

The influence of phosphite (H2PO3-) on the response of Saccharomyces cerevisiae to orthophosphate (HPO4(2-); Pi) starvation was assessed. Phosphate-repressible acid phosphatase (rAPase) derepression and cell development were abolished when phosphate-sufficient (+Pi) yeast were subcultured into phosphate-deficient (-Pi) media containing 0.1 mM phosphite. By contrast, treatment with 0.1 mM phosphite exerted no influence on rAPase activity or growth of +Pi cells. 31P NMR spectroscopy revealed that phosphite is assimilated and concentrated by yeast cultured with 0.1 mM phosphite, and that the levels of sugar phosphates, pyrophosphate, and particularly polyphosphate were significantly reduced in the phosphite-treated -Pi cells. Examination of phosphite's effects on two PHO regulon mutants that constitutively express rAPase indicated that (i) a potential target for phosphite's action in -Pi yeast is Pho84 (plasmalemma high-affinity Pi transporter and component of a putative phosphate sensor-complex), and that (ii) an additional mechanism exists to control rAPase expression that is independent of Pho85 (cyclin-dependent protein kinase). Marked accumulation of polyphosphate in the delta pho85 mutant suggested that Pho85 contributes to the control of polyphosphate metabolism. Results are consistent with the hypothesis that phosphite obstructs the signaling pathway by which S. cerevisiae perceives and responds to phosphate deprivation at the molecular level.


Subject(s)
Fungal Proteins/analysis , Phosphates/deficiency , Phosphates/metabolism , Phosphites/metabolism , Phosphorus/chemistry , Phosphorus/metabolism , Regulon , Saccharomyces cerevisiae/metabolism , Acclimatization , Acid Phosphatase/metabolism , Alcohol Dehydrogenase/metabolism , Pyruvate Kinase/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Signal Transduction
2.
J Bone Miner Res ; 15(1): 138-46, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10646123

ABSTRACT

Resistance of bone to fracture--bone strength--has been shown to depend on both the amount of bone and its architectural spatial organization. In vivo magnetic resonance (MR) techniques have the capability of imaging bone tissue, including the trabecular microarchitecture and the marrow composition. We have applied in vivo and ex vivo MR methods to the tibia in an ovariectomized rat model of osteoporosis. Specifically, in vivo high-resolution three-dimensional MR imaging and localized MRS were facilitated by specialized coils and high field magnets, resulting in enhanced sensitivity of detection. As a result, in vivo and ex vivo differences in marrow composition were found between sham-ovariectomized, ovariectomized, and ovariectomized animals treated with 17-beta-estradiol. Estrogen effects were detected in vivo 7 days after surgery (3 days into treatment) as a decrease in the tibial fat signal level. The in vivo effects of ovariectomy were observed 56 days after surgery as an increase in MR image fat signal level and spectral fat/water ratio in the proximal tibia. Ex vivo measurements of tibial marrow water signal discriminated clearly between the sham and ovariectomized groups and showed increased individual variations in the treatment group. Imaging further showed that the highest fat content is observed in the epiphysis. Computed tomography confirmed ovariectomy-induced loss of bone in the proximal tibial metaphysis compared with the sham group. This loss of cancellous bone with ovariectomy is consistent with the MR observations of increases in both fat and water in the metaphysis. These data showed that MR techniques complement X-ray techniques in the bone, water, and fat compositional analysis of the appendicular skeleton in response to ovariectomy and pharmacological treatment.


Subject(s)
Body Composition , Bone Density/drug effects , Bone and Bones/anatomy & histology , Estrogens/pharmacology , Adipose Tissue , Animals , Body Water , Bone and Bones/drug effects , Female , Magnetic Resonance Imaging , Ovariectomy , Rats , Rats, Sprague-Dawley
3.
Plant Physiol ; 110(1): 105-110, 1996 Jan.
Article in English | MEDLINE | ID: mdl-12226174

ABSTRACT

The development of Brassica nigra seedlings over 20 d of growth was disrupted by the fungicide phosphonate (Phi) in a manner inversely correlated with nutritional inorganic phosphate (Pi) levels. The growth of Pi-sufficient (1.25 mM Pi) seedlings was suppressed when 10, but not 5, mM Phi was added to the nutrient medium. In contrast, the fresh weights and root:shoot ratios of Pi-limited (0.15 mM) seedlings were significantly reduced at 1.5 mM Phi, and they progressively declined to about 40% of control values as medium Phi concentration was increased to 10 mM. Intracellular Pi levels generally decreased in Phi-treated seedlings, and Phi accumulated in leaves and roots to levels up to 6- and 16-fold that of Pi in Pi-sufficient and Pi-limited plants, respectively. Extractable activities of the Pi-starvation-inducible enzymes phosphoenolpyruvate phosphatase and inorganic pyrophosphate-dependent phosphofructokinase were unaltered in Pi-sufficient seedlings grown on 5 or 10 mM Phi. However, when Pi-limited seedlings were grown on 1.5 to 10 mM Phi (a) the induction of phosphoenolpyruvate phosphatase and inorganic pyrophosphate-dependent phosphofructokinase activities by Pi limitation was reduced by 40 to 90%, whereas (b) soluble protein concentrations and the activities of the ATP-dependent phosphofructokinase and pyruvate kinase were unaffacted. It is concluded that Phi specifically interrupts processes involved in regulation of the Pi-starvation response in B. nigra.

4.
J Gen Microbiol ; 136(1): 147-56, 1990 Jan.
Article in English | MEDLINE | ID: mdl-2351953

ABSTRACT

31P NMR spectra were obtained from perchloric acid (PCA) and KOH extracts of Phytophthora palmivora mycelium. Signals indicating the presence of large amounts of short-chain polyphosphate were observed in the spectra of PCA extracts of mycelia grown under both low (0.1 mM) and high (10 mM) phosphate conditions. The mean chain length of polyphosphate was calculated from the relative areas of signals arising from terminal and internal P nuclei in the polyphosphate chain. The small amount of polyphosphate evident in the KOH extract had an average chain length similar to PCA-soluble polyphosphate. 32P tracer studies indicated that phosphorus in the PCA fraction accounted for between 50 and 60% of total phosphorus, the bulk of the remainder being divided between the lipid and KOH extracts. The presence of the fungicide phosphorous acid markedly reduced the average chain length of acid-soluble polyphosphate. This reduction occurred both under low-phosphate conditions, in which treatment with phosphorous acid retards growth, and under high-phosphate conditions, in which no significant growth retardation is observed. Treatment with phosphorous acid perturbed phosphorus distribution and lipid composition under low-phosphate conditions.


Subject(s)
Chytridiomycota/drug effects , Phosphorous Acids/pharmacology , Phytophthora/drug effects , Potassium Compounds , Hydroxides/pharmacology , Magnetic Resonance Spectroscopy , Phosphates/pharmacology , Phospholipids/analysis , Phytophthora/metabolism , Polyphosphates/analysis , Potassium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...