Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 107(6): 3413-3419, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246541

ABSTRACT

Portable handheld devices based on near-infrared (NIR) technology have improved and are gaining popularity, even if their implementation in milk has been barely evaluated. Thus, the aim of the present study was to assess the feasibility of using short-wave pocket-sized NIR devices to predict milk quality. A total of 331 individual milk samples from different cow breeds and herds were collected in 2 consecutive days for chemical determination and spectral collection by using 2 pocket-sized NIR spectrophotometers working in the range of 740 to 1,070 nm. The reference data were matched with the corresponding spectrum and modified partial least squares regression models were developed. A 5-fold cross-validation was applied to evaluate individual device performance and an external validation with 25% of the dataset as the validation set was applied for the final models. Results revealed that both devices' absorbance was highly correlated but greater for instrument A than B. Thus, the final models were built by averaging the spectra from both devices for each sample. The fat content prediction model was adequate for quality control with a coefficient of determination (R2ExV) and a residual predictive deviation (RPDExV) in external validation of 0.93 and 3.73, respectively. Protein and casein content as well as fat-to-protein ratio prediction models might be used for a rough screening (R2ExV >0.70; RPDExV >1.73). However, poor prediction models were obtained for all the other traits with an R2ExV between 0.43 (urea) and 0.03 (SCC), and a RPDExV between 1.18 (urea) and 0.22 (SCC). In conclusion, short-wave portable handheld NIR devices accurately predicted milk fat content, and protein, casein, and fat-to-protein ratio might be applied for rough screening. It seems that there is not enough information in this NIR region to develop adequate prediction models for lactose, SCC, urea, and freezing point.


Subject(s)
Milk , Milk/chemistry , Animals , Cattle , Female , Spectroscopy, Near-Infrared/veterinary
2.
Front Vet Sci ; 10: 1141286, 2023.
Article in English | MEDLINE | ID: mdl-37065221

ABSTRACT

The present study aimed to investigate the association between stayability (STAY) traits, muscularity, and body condition score (BCS) in the Italian Simmental dual-purpose cows. Data were collected from 2,656 cows linearly scored in their first lactation from 2002 to 2020 and reared in 324 herds. The binary trait STAY, which is the ability of a cow to stay in the herd, was obtained for each cow-lactation available up to parity 5 (from STAY1-2 to STAY4-5). Analysis of STAY was carried out using logistic regression, considering the fixed effect of energy corrected milk, conception rate, somatic cell score, and muscularity or BCS predicted at different time points. The herd of linear classification and residual error were the random effects. Primiparous cows with a medium BCS and muscularity in early lactation presented a more favorable STAY across life compared to thinner ones (P < 0.05). In fact, cows with an intermediate BCS/muscularity were more likely to stay in the herd after the third lactation (STAY3-4), compared to those presenting a lower BCS/muscularity (P < 0.01). However, cows whose muscularity was high were generally less likely to start the third lactation compared to the others. A potential explanation for this could be the willing to market cows with good conformation for meat purpose. Simmental is in fact a dual-purpose breed known for the good carcass yield and meat quality. This study demonstrates how muscularity and BCS available early in life can be associated with the ability of Simmental cows to stay in the herd.

3.
Animals (Basel) ; 11(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915759

ABSTRACT

Extensive summer grazing is a dairy herd management practice frequently adopted in mountainous areas. Nowadays, this activity is threatened by its high labour demand, but it is fundamental for environmental, touristic and economic implications, as well as for the preservation of social and cultural traditions. Scarce information on the effects of such low-input farming systems on cattle health is available. Therefore, the present case study aimed at investigating how grazing may affect the health status of dairy cows by using milk traits routinely available from the national milk recording scheme. The research involved a dairy herd of 52 Simmental and 19 Holstein × Simmental crossbred cows. The herd had access to the pasture according to a rotational grazing scheme from late spring up to the end of summer. A total of 616 test day records collected immediately before and during the grazing season were used. Individual milk yield was registered during the milking procedure. Milk samples were analysed for composition (fat, protein, casein and lactose contents) and health-related milk indicators (electrical conductivity, urea and ß-hydroxybutyrate) using mid-infrared spectroscopy. Somatic cell count (SCC) and differential SCC were also determined. Data were analysed with a linear mixed model, which included the fixed effects of the period of sampling, cow breed, stage of lactation and parity, and the random effects of cow nested within breed and the residual. The transition from barn farming to pasture had a negative effect on milk yield, together with a small deterioration of fat and protein percentages. Health-related milk indicators showed a minor deterioration of the fat to protein ratio, differential SCC and electrical conductivity, particularly towards the end of the grazing season, whereas the somatic cell score and ß-hydroxybutyrate were relatively constant. Overall, the study showed that, when properly managed, pasture grazing does not have detrimental effects on dairy cows in terms of udder health and efficiency. Therefore, the proper management of cows on pasture can be a valuable solution to preserve the economic, social and environmental sustainability of small dairy farms in the alpine regions, without impairing cows' health.

4.
Animals (Basel) ; 10(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33322019

ABSTRACT

Food antioxidants enhance products shelf life and stability during technological treatments through the maintenance of their physical and chemical properties. Moreover, they are endowed with several positive effects on human health, including cell membranes preservation, enzyme functionality, and DNA integrity. Milk has been described in relation to a wide array of fat soluble and water-soluble antioxidant compounds, in particular vitamin A, C, and E, lactoferrin and peptides derived from casein and whey proteins. The total antioxidant activity (TAA) of milk is a novel and scarcely explored trait, defined as the sum of antioxidant contributions of the aforementioned compounds. On this background, the aims of the present study were to investigate the variability of milk TAA on a large scale exploiting predictions obtained through mid-infrared (MIR) spectroscopy and to estimate genetic parameters of this trait in Holstein cows. Individual milk samples were collected between January 2011 and December 2018 during the routine milk recording procedure. Samples were analysed for gross composition through MIR spectroscopy and MIR spectra were stored. Milk TAA was then predicted (pTAA) from the stored milk MIR spectra (111,653 test-day records of 9519 cows in 344 herds) using the previously developed prediction model; considering the prediction accuracy, pTAA might be considered a proxy of the TAA determined through the reference method. Overall, pTAA averaged 7.16 mmoL/L of Trolox equivalents, showed a nadir around 40 days after calving and increased thereafter, following a linear trend up to the end of lactation. The lowest pTAA was observed in milk sampled from June to September. Milk pTAA was heritable (0.401 ± 0.015) and genetically associated to fat yield (0.366 ± 0.049), crude protein (CP) yield (0.238 ± 0.052), fat percentage (0.616 ± 0.022) and CP percentage (0.754 ± 0.015). The official selection index of Italian Holstein put the 49% of the emphasis on fat and protein yield and percentage; therefore, it derives that an indirect favourable selection for milk pTAA should be already in progress in Italian Holstein population.

5.
J Appl Genet ; 61(4): 593-605, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32851593

ABSTRACT

The aim of this study was to describe the fecal bacteria and archaea composition of Holstein-Friesian and Simmental heifers and lactating cows, using 16S rRNA gene sequencing. Bacteria and archaea communities were characterized and compared between heifers and cows of the same breed. Two breeds from different farms were considered, just to speculate about the conservation of the microbiome differences between cows and heifers that undergo different management conditions. The two breeds were from two different herds. Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most abundant phyla in all experimental groups. Alpha- and beta-diversity metrics showed significant differences between heifers and cows within the same breed, supported by principal coordinate analysis. The analysis of Holstein-Friesian fecal microbiome composition revealed 3 different bacteria families, 2 genera, and 2 species that differed between heifers and cows; on the other hand, Simmental heifers and cows differed only for one bacteria family, one archaeal genus, and one bacteria species. Results of the present study suggest that fecal communities of heifers and cows are different, and that fecal microbiome is maintained across experimental groups.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , Lactation/genetics , Microbiota/genetics , Animals , Archaea/genetics , Bacteria/genetics , Breeding , Cattle , Feces/microbiology , Female , High-Throughput Nucleotide Sequencing , RNA, Ribosomal, 16S/genetics
6.
Animals (Basel) ; 10(4)2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32244846

ABSTRACT

Methane (CH4) emissions represent a worldwide problem due to their direct involvement in atmospheric warming and climate change. Ruminants are among the major players in the global scenario of CH4 emissions, and CH4 emissions are a problem for feed efficiency since enteric CH4 is eructed to the detriment of milk and meat production. The collection of CH4 phenotypes at the population level is still hampered by costly and time-demanding techniques. In the present study, a laser methane detector was used to assess repeatability and reproducibility of CH4 phenotypes, including mean and aggregate of CH4 records, slope of the linear equation modelling the aggregate function, and mean and number of CH4 peak records. Five repeated measurements were performed in a commercial farm on three Simmental heifers, and the same protocol was repeated over a period of three days. Methane emission phenotypes expressed as parts per million per linear meter (ppm × m) were not normally distributed and, thus, they were log-transformed to reach normality. Repeatability and reproducibility were calculated as the relative standard deviation of five measurements within the same day and 15 measurements across three days, respectively. All phenotypes showed higher repeatability and reproducibility for log-transformed data compared with data expressed as ppm × m. The linear equation modelling the aggregate function highlighted a very high coefficient of determination (≥0.99), which suggests that daily CH4 emissions might be derived using this approach. The number of CH4 peaks resulted as particularly diverse across animals and therefore it is a potential candidate to discriminate between high and low emitting animals. Results of this study suggest that laser methane detector is a promising tool to measure bovine CH4 emissions in field conditions.

7.
Animals (Basel) ; 10(3)2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32183495

ABSTRACT

Through the development of the high-throughput genotyping arrays, molecular markers and genes related to phenotypic traits have been identified in livestock species. In poultry, plumage color is an important qualitative trait that can be used as phenotypic marker for breed identification. In order to assess sources of genetic variation related to the Polverara chicken breed plumage colour (black vs. white), we carried out a genome-wide association study (GWAS) and a genome-wide fixation index (FST) scan to uncover the genomic regions involved. A total of 37 animals (17 white and 20 black) were genotyped with the Affymetrix 600 K Chicken single nucleotide polymorphism (SNP) Array. The combination of results from GWAS and FST revealed a total of 40 significant markers distributed on GGA 01, 03, 08, 12 and 21, and located within or near known genes. In addition to the well-known TYR, other candidate genes have been identified in this study, such as GRM5, RAB38 and NOTCH2. All these genes could explain the difference between the two Polverara breeds. Therefore, this study provides the basis for further investigation of the genetic mechanisms involved in plumage color in chicken.

8.
Animals (Basel) ; 9(7)2019 Jul 09.
Article in English | MEDLINE | ID: mdl-31323929

ABSTRACT

Milk and dairy products are major sources of minerals in human diet. Minerals influence milk technological properties; in particular, micellar and diffusible minerals differentially influence rennet clotting time, curd firmness and curd formation rate. The aim of the present study was to investigate the ability of mid-infrared spectroscopy to predict the content of micellar and diffusible mineral fractions in bovine milk. Spectra of reference milk samples (n = 93) were collected using Milkoscan™ 7 (Foss Electric A/S, Hillerød, Denmark) and total, diffusible and micellar content of minerals were quantified using inductively coupled plasma optical emission spectrometry. Backward interval partial least squares algorithm was applied to exclude uninformative spectral regions and build prediction models for total, diffusible and micellar minerals content. Results showed that backward interval partial least squares analysis improved the predictive ability of the models for the studied traits compared with traditional partial least squares approach. Overall, the predictive ability of mid-infrared prediction models was moderate to low, with a ratio of performance to deviation in cross-validation that ranged from 1.15 for micellar K to 2.73 for total P.

9.
Animals (Basel) ; 9(4)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31003454

ABSTRACT

This study aimed to investigate factors affecting protein fractions, namely α-casein (α-CN), ß-casein (ß-CN), κ-casein (κ-CN), ß-lactoglobulin (ß-LG) and α-lactalbumin (α-LA) predicted from milk infrared spectra in milk of dairy and dual-purpose cattle breeds. The dataset comprised 735,328 observations from 49,049 cows in 1782 herds. Results highlighted significant differences of protein fractions in milk of the studied breeds. Significant variations of protein fractions were found also through parities and lactation, with the latter thoroughly influencing protein fractions percentage. Interesting correlations (r) were estimated between ß-CN, κ-CN and ß-LG, expressed as percentage of crude protein, and milk urea nitrogen (r = 0.31, -0.20 and -0.26, respectively) and between α-LA and fat percentage (r = 0.41). The present study paves the way for future studies on the associations between protein fractions and milk technological properties, and for the estimation of genetic parameters of predicted protein composition.

SELECTION OF CITATIONS
SEARCH DETAIL
...