Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 12(7): 2029-2040, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37341594

ABSTRACT

The potential of nonmodel organisms for industrial biotechnology is increasingly becoming evident since advances in systems and synthetic biology have made it possible to explore their unique traits. However, the lack of adequately characterized genetic elements that drive gene expression impedes benchmarking nonmodel with model organisms. Promoters are one of the genetic elements that contribute significantly to gene expression, but information about their performance in different organisms is limited. This work addresses this bottleneck by characterizing libraries of synthetic σ70-dependent promoters controlling the expression of msfGFP, a monomeric, superfolder green fluorescent protein, in both Escherichia coli TOP10 and Pseudomonas taiwanensis VLB120, a less explored microbe with industrially attractive attributes. We adopted a standardized method for comparing gene promoter strength across species and laboratories. Our approach uses fluorescein calibration and adjusts for cell growth variation, enabling accurate cross-species comparisons. The quantitative description of promoter strength is a valuable expansion of P. taiwanensis VLB120's genetic toolbox, while the comparison with the performance in E. coli facilitates the evaluation of P. taiwanensis VLB120's potential as a chassis for biotechnology applications.


Subject(s)
Bacterial Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/genetics , Promoter Regions, Genetic/genetics , Gene Library , Synthetic Biology
2.
Metab Eng ; 62: 84-94, 2020 11.
Article in English | MEDLINE | ID: mdl-32810591

ABSTRACT

Methyl ketones present a group of highly reduced platform chemicals industrially produced from petroleum-derived hydrocarbons. They find applications in the fragrance, flavor, pharmacological, and agrochemical industries, and are further discussed as biodiesel blends. In recent years, intense research has been carried out to achieve sustainable production of these molecules by re-arranging the fatty acid metabolism of various microbes. One challenge in the development of a highly productive microbe is the high demand for reducing power. Here, we engineered Pseudomonas taiwanensis VLB120 for methyl ketone production as this microbe has been shown to sustain exceptionally high NAD(P)H regeneration rates. The implementation of published strategies resulted in 2.1 g Laq-1 methyl ketones in fed-batch fermentation. We further increased the production by eliminating competing reactions suggested by metabolic analyses. These efforts resulted in the production of 9.8 g Laq-1 methyl ketones (corresponding to 69.3 g Lorg-1 in the in situ extraction phase) at 53% of the maximum theoretical yield. This represents a 4-fold improvement in product titer compared to the initial production strain and the highest titer of recombinantly produced methyl ketones reported to date. Accordingly, this study underlines the high potential of P. taiwanensis VLB120 to produce methyl ketones and emphasizes model-driven metabolic engineering to rationalize and accelerate strain optimization efforts.


Subject(s)
Metabolic Engineering , Pseudomonas , Acetone , Fermentation , Pseudomonas/genetics
3.
Appl Environ Microbiol ; 86(11)2020 05 19.
Article in English | MEDLINE | ID: mdl-32245760

ABSTRACT

Obligate aerobic organisms rely on a functional electron transport chain for energy conservation and NADH oxidation. Because of this essential requirement, the genes of this pathway are likely constitutively and highly expressed to avoid a cofactor imbalance and energy shortage under fluctuating environmental conditions. We here investigated the essentiality of the three NADH dehydrogenases of the respiratory chain of the obligate aerobe Pseudomonas taiwanensis VLB120 and the impact of the knockouts of corresponding genes on its physiology and metabolism. While a mutant lacking all three NADH dehydrogenases seemed to be nonviable, the single or double knockout mutant strains displayed no, or only a weak, phenotype. Only the mutant deficient in both type 2 dehydrogenases showed a clear phenotype with biphasic growth behavior and a strongly reduced growth rate in the second phase. In-depth analyses of the metabolism of the generated mutants, including quantitative physiological experiments, transcript analysis, proteomics, and enzyme activity assays revealed distinct responses to type 2 and type 1 dehydrogenase deletions. An overall high metabolic flexibility enables P. taiwanensis to cope with the introduced genetic perturbations and maintain stable phenotypes, likely by rerouting of metabolic fluxes. This metabolic adaptability has implications for biotechnological applications. While the phenotypic robustness is favorable in large-scale applications with inhomogeneous conditions, the possible versatile redirecting of carbon fluxes upon genetic interventions can thwart metabolic engineering efforts.IMPORTANCE While Pseudomonas has the capability for high metabolic activity and the provision of reduced redox cofactors important for biocatalytic applications, exploitation of this characteristic might be hindered by high, constitutive activity of and, consequently, competition with the NADH dehydrogenases of the respiratory chain. The in-depth analysis of NADH dehydrogenase mutants of Pseudomonas taiwanensis VLB120 presented here provides insight into the phenotypic and metabolic response of this strain to these redox metabolism perturbations. This high degree of metabolic flexibility needs to be taken into account for rational engineering of this promising biotechnological workhorse toward a host with a controlled and efficient supply of redox cofactors for product synthesis.


Subject(s)
Bacterial Proteins/genetics , Mutation , NADH Dehydrogenase/genetics , Pseudomonas/physiology , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , NADH Dehydrogenase/metabolism , Oxidation-Reduction , Pseudomonas/genetics , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...