Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Entomol ; 46(3): 626-632, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28334410

ABSTRACT

Prey have evolved a number of defenses against predation, and predators have developed means of countering these protective measures. Although caterpillars of the monarch butterfly, Danaus plexippus L., are defended by cardenolides sequestered from their host plants, the Chinese mantid Tenodera sinensis Saussure guts the caterpillar before consuming the rest of the body. We hypothesized that this gutting behavior might be driven by the heterogeneous quality of prey tissue with respect to toxicity and/or nutrients. We conducted behavioral trials in which mantids were offered cardenolide-containing and cardenolide-free D. plexippus caterpillars and butterflies. In addition, we fed mantids starved and unstarved D. plexippus caterpillars from each cardenolide treatment and nontoxic Ostrinia nubilalis Hübner caterpillars. These trials were coupled with elemental analysis of the gut and body tissues of both D. plexippus caterpillars and corn borers. Cardenolides did not affect mantid behavior: mantids gutted both cardenolide-containing and cardenolide-free caterpillars. In contrast, mantids consumed both O. nubilalis and starved D. plexippus caterpillars entirely. Danaus plexippus body tissue has a lower C:N ratio than their gut contents, while O. nubilalis have similar ratios; gutting may reflect the mantid's ability to regulate nutrient uptake. Our results suggest that post-capture prey processing by mantids is likely driven by a sophisticated assessment of resource quality.


Subject(s)
Butterflies/chemistry , Cardenolides/toxicity , Mantodea/physiology , Nutritive Value , Predatory Behavior , Animals , Larva/chemistry
2.
Insects ; 8(1)2017 Feb 17.
Article in English | MEDLINE | ID: mdl-28218646

ABSTRACT

Predators that feed on chemically-defended prey often experience non-lethal effects that result in learned avoidance of the prey species. Some predators are able to consume toxic prey without ill-effect. The Chinese mantid is able to consume cardenolide-containing monarch caterpillars without immediate adverse effects. Although they discard the caterpillars' gut contents, mantids consume sequestered cardenolides. Although consumption of these cardenolides does not elicit an acute response, there may be long-term costs associated with cardenolide consumption. We tested the hypothesis that consumption of monarch caterpillars will adversely affect adult mantid biomass gain and reproductive condition. We reared mantids from egg to adult and assigned them to one of four toxicity groups that differed in the number of monarch caterpillars offered over a 15-day period. Mantids consumed similar amounts of prey biomass during the experiment. Yet, mantids in the high-toxicity group had a higher conversion efficiency and gained more biomass than mantids in other groups. Mantids in all treatment groups produced similar numbers of eggs. However, mantids in the high-toxicity group produced heavier eggs and devoted a greater portion of their biomass toward egg production than those in the control group. This increase in reproductive condition is probably driven by variation in prey nutritional value and/or the nutritional advantages inherent in eating multiple food types. Our results demonstrate the mantid is able to incorporate 'toxic' monarch prey into its diet without acute or chronic ill-effects.

3.
ACS Chem Neurosci ; 7(1): 26-33, 2016 Jan 20.
Article in English | MEDLINE | ID: mdl-26559394

ABSTRACT

Pomegranate shows neuroprotective effects against Alzheimer's disease (AD) in several reported animal studies. However, whether its constituent ellagitannins and/or their physiologically relevant gut microbiota-derived metabolites, namely, urolithins (6H-dibenzo[b,d]pyran-6-one derivatives), are the responsible bioactive constituents is unknown. Therefore, from a pomegranate extract (PE), previously reported by our group to have anti-AD effects in vivo, 21 constituents, which were primarily ellagitannins, were isolated and identified (by HPLC, NMR, and HRESIMS). In silico computational studies, used to predict blood-brain barrier permeability, revealed that none of the PE constituents, but the urolithins, fulfilled criteria required for penetration. Urolithins prevented ß-amyloid fibrillation in vitro and methyl-urolithin B (3-methoxy-6H-dibenzo[b,d]pyran-6-one), but not PE or its predominant ellagitannins, had a protective effect in Caenorhabditis elegans post induction of amyloid ß(1-42) induced neurotoxicity and paralysis. Therefore, urolithins are the possible brain absorbable compounds which contribute to pomegranate's anti-AD effects warranting further in vivo studies on these compounds.


Subject(s)
Alzheimer Disease/drug therapy , Coumarins/therapeutic use , Hydrolyzable Tannins/metabolism , Lythraceae/chemistry , Neuroprotective Agents/therapeutic use , Age Factors , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Animals, Genetically Modified , Biophysics , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Caenorhabditis elegans , Chromatography, Liquid , Computer Simulation , Coumarins/metabolism , Coumarins/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Mass Spectrometry , Models, Biological , Neuroprotective Agents/pharmacology , Peptide Fragments/genetics , Peptide Fragments/metabolism
4.
Nat Prod Commun ; 10(3): 491-3, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25924536

ABSTRACT

Two new phenolics, a stilbenoid, vulpinoideol A (1), and a chalcone, vulpinoideol B (2), along with ten known compounds (3-12) were isolated from Carex vulpinoidea Michx. seeds. The structures of compounds 1-12 were elucidated based on spectrometric and spectroscopic analyses including HRESIMS, 1D and 2D NMR data. All compounds were evaluated for their tyrosinase enzyme inhibitory activities.


Subject(s)
Carex Plant/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Phenols/chemistry , Phenols/pharmacology , Seeds/chemistry , Molecular Structure
5.
RSC Adv ; 5(130): 107904-107915, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-26989482

ABSTRACT

Gallotannins containing a glucitol core, which are only produced by members of the maple (Acer) genus, are more potent α-glucosidase inhibitors than the clinical drug, acarbose. While this activity is influenced by the number of substituents on the glucitol core (e.g. more galloyl groups leads to increased activity), the mechanisms of inhibitory action are not known. Herein, we investigated ligand-enzyme interactions and binding mechanisms of a series of 'glucitol-core containing gallotannins (GCGs)' against the α-glucosidase enzyme. The GCGs included ginnalins A, B and C (containing two, one, and one galloyl/s, respectively), maplexin F (containing 3 galloyls) and maplexin J (containing 4 galloyls). All of the GCGs were noncompetitive inhibitors of α-glucosidase and their interactions with the enzyme were further explored using biophysical and spectroscopic measurements. Thermodynamic parameters (by isothermal titration calorimetry) revealed a 1:1 binding ratio between GCGs and α-glucosidase. The binding regions between the GCGs and α-glucosidase, probed by a fluorescent tag, 1,1'-bis(4-anilino-5-napththalenesulfonic acid, revealed that the GCGs decreased the hydrophobic surface of the enzyme. In addition, circular dichroism analyses showed that the GCGs bind to α-glucosidase and lead to loss of the secondary α-helix structure of the protein. Also, molecular modeling was used to predict the binding site between the GCGs and the α-glucosidase enzyme. This is the first study to evaluate the mechanisms of inhibitory activities of gallotannins containing a glucitol core on α-glucosidase.

6.
Nat Prod Commun ; 10(11): 1977-80, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26749841

ABSTRACT

The maple (Acer) genus is a reported source of bioactive (poly)phenols, including gallotannins, but several of its members, such as the sycamore maple (A. pseudoplatanus), remain uninvestigated. Herein, thirty-nine compounds, including a new gallotannin, 1,2,3-tri-O-galloyl-6-O-(p-hydroxybenzoyl)-ß-D- glucopyranoside (1), and thirty-eight (2-39) known compounds, consisting of four gallotannins, one ellagitannin, thirteen flavonoids, eight hydroxycinnamic acids, ten benzoic acid derivatives, and two sesquiterpenoids, were isolated from sycamore maple leaves. Their structures were determined based on NMR and mass spectral analyses. The isolates were evaluated for α-glucosidase inhibitory and antioxidant activities. Among the isolates, the gallotannins were the most potent α-glucosidase inhibitors with thirteen-fold more potent activity compared with the clinical drug, acarbose (IC50 = 16-31 vs. 218 µM). Similarly, the gallotannins showed the highest antioxidant activities, followed by the other phenolic sub-classes, while the sesquiterpenoids were inactive.


Subject(s)
Acer/chemistry , Glycoside Hydrolase Inhibitors/chemistry , Hydrolyzable Tannins/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Glycoside Hydrolase Inhibitors/isolation & purification , Hydrolyzable Tannins/isolation & purification , Molecular Structure , Phytochemicals/isolation & purification , Plant Extracts/isolation & purification , Plant Leaves/chemistry
7.
ACS Nano ; 7(10): 8780-93, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24053214

ABSTRACT

Gold and copper nanoparticles have been widely investigated for photothermal therapy of cancer. However, degradability and toxicity of these nanoparticles remain concerns. Here, we compare hollow CuS nanoparticles (HCuSNPs) with hollow gold nanospheres (HAuNS) in similar particle sizes and morphology following intravenous administration to mice. The injected pegylated HCuSNPs (PEG-HCuSNPs) are eliminated through both hepatobiliary (67 percentage of injected dose, %ID) and renal (23 %ID) excretion within one month postinjection. By contrast, 3.98 %ID of Au is excreted from liver and kidney within one month after iv injection of pegylated HAuNS (PEG-HAuNS). Comparatively, PEG-HAuNS are almost nonmetabolizable, while PEG-HCuSNPs are considered biodegradable nanoparticles. PEG-HCuSNPs do not show significant toxicity by histological or blood chemistry analysis. Principal component analysis and 2-D peak distribution plots of data from matrix-assisted laser desorption ionization-time-of-flight imaging mass spectrometry (MALDI-TOF IMS) of liver tissues demonstrated a reversible change in the proteomic profile in mice receiving PEG-HCuSNPs. This is attributed to slow dissociation of Cu ion from CuS nanoparticles along with effective Cu elimination for maintaining homeostasis. Nonetheless, an irreversible change in the proteomic profile is observed in the liver from mice receiving PEG-HAuNS by analysis of MALDI-TOF IMS data, probably due to the nonmetabolizability of Au. This finding correlates with the elevated serum lactate dehydrogenase at 3 months after PEG-HAuNS injection, indicating potential long-term toxicity. The comparative results between the two types of nanoparticles will advance the development of HCuSNPs as a new class of biodegradable inorganic nanomaterials for photothermal therapy.


Subject(s)
Copper/chemistry , Gold/chemistry , Metal Nanoparticles , Sulfides/chemistry , Animals , Cell Line , Female , Male , Metal Nanoparticles/toxicity , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
J Agric Food Chem ; 59(16): 8632-8, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21761862

ABSTRACT

Research has shown that members of the Carex genus produce biologically active stilbenoids including resveratrol oligomers. This is of great interest to the nutraceutical industry given that resveratrol, a constituent of grape and red wine, has attracted immense research attention due to its potential human health benefits. In the current study, five resveratrol oligomers (isolated from Carex folliculata and Carex gynandra ), along with resveratrol, were evaluated for antiproliferative effects against human colon cancer (HCT-116, HT-29, Caco-2) and normal human colon (CCD-18Co) cells. The resveratrol oligomers included one dimer, two trimers, and two tetramers: pallidol (1); α-viniferin (2) and trans-miyabenol C (3); and kobophenols A (4) and B (5), respectively. Although not cytotoxic, the resveratrol oligomers (1-5), as well as resveratrol, inhibited growth of the human colon cancer cells. Among the six stilbenoids, α-viniferin (2) was most active against the colon cancer cells with IC(50) values of 6-32 µM (>2-fold compared to normal colon cells). Moreover, α-viniferin (at 20 µM) did not induce apoptosis but arrested cell cycle (in the S-phase) for the colon cancer but not the normal colon cells. This study adds to the growing body of knowledge supporting the anticancer effects of resveratrol and its oligomers. Furthermore, Carex species should be investigated for their nutraceutical potential given that they produce biologically active stilbenoids such as α-viniferin.


Subject(s)
Carex Plant/chemistry , Cell Cycle Checkpoints , Cell Division/drug effects , Colonic Neoplasms/pathology , Stilbenes/pharmacology , Caco-2 Cells , Colon/drug effects , HCT116 Cells , HT29 Cells , Humans , Resveratrol , Stilbenes/chemistry , Stilbenes/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...