Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 67(9): 2490-2496, 2020 09.
Article in English | MEDLINE | ID: mdl-31902753

ABSTRACT

OBJECTIVE: Tumor stiffening in pancreatic adenocarcinoma (PDAC) has been linked to cancer progression and lack of therapy response, yet current elastography tools cannot map stiffness in a whole tumor field-of-view with biologically relevant spatial resolution. Therefore, this study was developed to assess stiffness heterogeneity and geometrical patterns across whole PDAC xenograft ex vivo tumors. METHODS: The ex vivo elastography (EVE) mapping system was capable of creating stiffness map at 300-micron spatial resolution under a 5-20 mm field of view relevant to whole tumor assessment. The stiffness value at each location was determined by compression testing and an absolute tumor Young's modulus map was calculated based on the calibration between the system and ultrasound elastography (R2 = 0.95). RESULTS: Two PDAC tumor lines AsPC-1 and BxPC-3 implanted in xenograft models were assessed to show tumor stiffness and its linear relationship to collagen content (R2 = 0.59). EVE was able to capture stiffness heterogeneity ranging between 5 and 100 kPa in pancreatic tumors with collagen content up to 25%. More importantly, data shows the inverse relationship of local stiffness to local drug distribution (R2 = 0.66) and vessel patency (R2 = 0.61) in both PDAC tumor lines. CONCLUSION: The results suggested that elastography could be utilized to predict drug penetration in PDAC tumors or assess response to biological modifying adjunct therapies. SIGNIFICANCE: This study presents the first attempt to map out stiffness on a biologically relevant spatial scale across whole PDAC tumor slices with spatial resolution in the hundreds of microns.


Subject(s)
Adenocarcinoma , Elasticity Imaging Techniques , Pancreatic Neoplasms , Adenocarcinoma/diagnostic imaging , Animals , Elastic Modulus , Mice , Pancreatic Neoplasms/diagnostic imaging , Ultrasonography
2.
Ultrasound Med Biol ; 43(12): 2891-2903, 2017 12.
Article in English | MEDLINE | ID: mdl-28964615

ABSTRACT

High tissue pressures prevent chemotherapeutics from reaching the parenchyma of pancreatic ductal adenocarcinoma, which makes it difficult to treat this aggressive disease. Researchers currently use invasive probes to monitor the effectiveness of pressure-reducing therapies, but this practice introduces additional complications. Here, we hypothesize that Young's modulus is a good surrogate for tissue pressure because collagen density and hyaluoronic acid, the key features of the tumor microenvironment responsible for high tissue pressures, also affect modulus elastograms. To corroborate this hypothesis, we used model-based quasi-static elastography to assess how the Young's modulus of naturally occurring AsPc-1 pancreatic tumors varies with collagen density and hyaluoronic acid concentration. We observed that Young's moduli of orthotopically grown xenograft tumors were 6 kPa (p < 0.05) higher than that of their subcutaneously grown counterparts. We also observed a strong correlation between Young's modulus and regions within the tumors with high collagen (R2 ≈ 0.8) and hyaluoronic acid (R2 ≈ 0.6) densities. These preliminary results indicate that hyaluronic acid and collagen density, features of the pancreatic ductal adenocarcinoma tumor microenvironment responsible for high tissue pressure, influence Young's modulus.


Subject(s)
Carcinoma, Pancreatic Ductal/diagnostic imaging , Elasticity Imaging Techniques/methods , Heterografts/diagnostic imaging , Pancreatic Neoplasms/diagnostic imaging , Animals , Disease Models, Animal , Elastic Modulus , Humans , Mice , Rats
3.
Sci Rep ; 7(1): 10093, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855644

ABSTRACT

The poor efficacy of systemic cancer therapeutics in pancreatic ductal adenocarcinoma (PDAC) is partly attributed to deposition of collagen and hyaluronan, leading to interstitial hypertension collapsing blood and lymphatic vessels, limiting drug delivery. The intrinsic micro-regional interactions between hyaluronic acid (HA), collagen and the spatial origins of mechanical stresses that close off blood vessels was investigated here. Multiple localized pressure measurements were analyzed with spatially-matched histochemical images of HA, collagen and vessel perfusion. HA is known to swell, fitting a linear elastic model with total tissue pressure (TTP) increasing above interstitial fluid pressure (IFP) directly with collagen content. However, local TTP appears to originate from collagen area fraction, as well as increased its entropy and fractal dimension, and morphologically appears to be maximized when HA regions are encapsulated by collagen. TTP was inversely correlated with vascular patency and verteporfin uptake, suggesting interstitial hypertension results in vascular compression and decreased molecular delivery in PDAC. Collagenase injection led to acute decreases in total tissue pressure and increased drug perfusion. Large microscopic variations in collagen distributions within PDAC leads to microregional TPP values that vary on the hundred micron distance scale, causing micro-heterogeneous limitations in molecular perfusion, and narrows viable treatment regimes for systemically delivered therapeutics.


Subject(s)
Carcinoma, Pancreatic Ductal/physiopathology , Collagen/chemistry , Extracellular Fluid , Pressure , Animals , Cell Line, Tumor , Collagenases , Humans , Hyaluronic Acid/chemistry , Rats, Nude , Stress, Mechanical , Verteporfin/metabolism
4.
J Biomech Eng ; 139(6)2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28388715

ABSTRACT

Elevated total tissue pressure (TTP) in pancreatic adenocarcinoma is often associated with stress applied by cellular proliferation and hydrated hyaluronic acid osmotic swelling; however, the causal roles of collagen in total tissue pressure have yet to be clearly measured. This study illustrates one direct correlation between total tissue pressure and increased deposition of collagen within the tissue matrix. This observation comes from a new modification to a conventional piezoelectric pressure catheter, used to independently separate and quantify total tissue pressure, solid stress (SS), and interstitial fluid pressure (IFP) within the same tumor location, thereby clarifying the relationship between these parameters. Additionally, total tissue pressure shows a direct correlation with verteporfin uptake, demonstrating the impediment of systemically delivered molecules with increased tissue hypertension.


Subject(s)
Collagen/metabolism , Extracellular Fluid/metabolism , Pancreatic Neoplasms/pathology , Pressure , Stress, Mechanical , Animals , Biological Transport , Cell Line, Tumor , Cell Transformation, Neoplastic , Compressive Strength , Female , Humans , Pancreatic Neoplasms/metabolism , Porphyrins/metabolism , Rats , Verteporfin , Pancreatic Neoplasms
5.
IEEE Trans Biomed Eng ; 61(6): 1642-50, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24691525

ABSTRACT

Magnetic nanoparticles in a tumor can induce therapeutic heating when energized by an alternating magnetic field from a current-carrying coil outside the body. We analyzed a single-turn, air-core coil carrying a filamentary current to quantify the power absorbed by: a) magnetic nanoparticles at depth in tissue and b) superficial tissue in response to induced eddy currents; we defined this quotient as power ratio (PR). Given some limit on the eddy current heating tolerated by an alert patient, maximizing the PR maximizes the power absorbed in the tumor; all else being equal, this increases the thermal dose delivered to the tumor. The mean eddy current heating rate tolerated in four clinical studies we reviewed equaled 12.5 kW/m (3). We differentiated our analytical expression for PR with respect to the radius of the coil to find the value of radius that maximizes PR. Under reasonable simplifying assumptions, the optimal value of coil radius equaled 1.187 times the depth of the nanoparticle target below the body surface. We also derived the PR of two coils surrounding the body configured as a Helmholtz pair. We computed PR for combinations of nanoparticle depths below the surface and axial locations with respect to the coils. At depths less than 4.6 cm, the optimized single coil had a higher PR than that of the Helmholtz pair and furthermore produced less total ohmic heating within the coil. These results were independent of driving frequency, nanoparticle concentration, tissue electrical conductivity, and magnetic nanoparticle heating rate, provided the latter is assumed to be proportional to the product of frequency and the square of the local magnetic field. This paper supports the clinical application of current-carrying coils to deliver efficacious hyperthermia therapy to tumors injected with magnetic nanoparticles.


Subject(s)
Hot Temperature , Hyperthermia, Induced/instrumentation , Magnetite Nanoparticles , Models, Theoretical , Humans , Hyperthermia, Induced/methods
SELECTION OF CITATIONS
SEARCH DETAIL