Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 681: 36-40, 2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37748257

ABSTRACT

Piezo1 and Piezo2 are mechanoreceptors involved in sensing both internal and external mechanical forces converting them in electrical signals to the brain. Piezo1 is mainly expressed in the endothelial system and in epidermis sensing shear stress and light touch. The internal traction forces generated by Myosin Light Chain Kinase (MYLK) activate Piezo1, regulating cell contraction. We observed Oenothera biennis cell culture hydro-soluble extract (ObHEx) activated MYLK regulating cell contraction ability. The aim of this work was to test the hypothesis that ObHEx activates Piezo1 through MYLK pathway using CHO cell overexpressing Piezo1, HUVEC and SHSY5Y cells endogenously expressing high levels of Piezo1. Results showed that ObHEx extracts were able to activate Piezo1 and the effect is due to Liriodendrin and Salvadoraside, the two most abundant lignans produced by the cell culture. The effect is lost in presence of MYLK specific inhibitors confirming the key role of this pathway and providing indication about the mechanism of action in Piezo1 activation by lignans. In summary, these results confirmed the connection between Piezo1 and MYLK, opening the possibility of using lignans-containing natural extracts to activate Piezo1.

2.
Front Immunol ; 11: 574046, 2020.
Article in English | MEDLINE | ID: mdl-33329538

ABSTRACT

The pseudokinase TRIB1 controls cell function in a range of contexts, by regulating MAP kinase activation and mediating protein degradation via the COP1 ubiquitin ligase. TRIB1 regulates polarization of macrophages and dysregulated Trib1 expression in murine models has been shown to alter atherosclerosis burden and adipose homeostasis. Recently, TRIB1 has also been implicated in the pathogenesis of prostate cancer, where it is often overexpressed, even in the absence of genetic amplification. Well described TRIB1 effectors include MAP kinases and C/EBP transcription factors, both in immune cells and in carcinogenesis. However, the mechanisms that regulate TRIB1 itself remain elusive. Here, we show that the long and conserved 3'untranslated region (3'UTR) of TRIB1 is targeted by miRNAs in macrophage and prostate cancer models. By using a systematic in silico analysis, we identified multiple "high confidence" miRNAs potentially binding to the 3'UTR of TRIB1 and report that miR-101-3p and miR-132-3p are direct regulators of TRIB1 expression and function. Binding of miR-101-3p and miR-132-3p to the 3'UTR of TRIB1 mRNA leads to an increased transcription and secretion of interleukin-8. Our data demonstrate that modulation of TRIB1 by miRNAs alters the inflammatory profile of both human macrophages and prostate cancer cells.


Subject(s)
Cytokines/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Macrophages/metabolism , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , 3' Untranslated Regions , Animals , Binding Sites , Cell Line, Tumor , Gene Expression Regulation , Humans , Inflammation , Interleukin-8/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Transgenic , MicroRNAs/genetics , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Cancers (Basel) ; 12(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932846

ABSTRACT

Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.

4.
Nat Commun ; 11(1): 214, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31924781

ABSTRACT

Neutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may influence arterial pathophysiology. Here we report that levels of circulating neutrophil microvesicles are enhanced by exposure to a high fat diet, a known risk factor for atherosclerosis. Neutrophil microvesicles accumulate at disease-prone regions of arteries exposed to disturbed flow patterns, and promote vascular inflammation and atherosclerosis in a murine model. Using cultured endothelial cells exposed to disturbed flow, we demonstrate that neutrophil microvesicles promote inflammatory gene expression by delivering miR-155, enhancing NF-κB activation. Similarly, neutrophil microvesicles increase miR-155 and enhance NF-κB at disease-prone sites of disturbed flow in vivo. Enhancement of atherosclerotic plaque formation and increase in macrophage content by neutrophil microvesicles is dependent on miR-155. We conclude that neutrophils contribute to vascular inflammation and atherogenesis through delivery of microvesicles carrying miR-155 to disease-prone regions.


Subject(s)
Atherosclerosis/metabolism , Endothelium/metabolism , MicroRNAs/metabolism , Neutrophils/metabolism , Animals , Atherosclerosis/pathology , Diet, High-Fat , Disease Models, Animal , Endothelial Cells , Endothelium/pathology , Gene Expression Regulation , Humans , Macrophages/metabolism , Mice , Mice, Knockout, ApoE , MicroRNAs/genetics , NF-kappa B/metabolism , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...