Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 13(8): 2320-2328, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30015474

ABSTRACT

Polysialyltransferases synthesize polysialic acid on cell surface-expressed glycoconjugates, which is crucial for developing processes and signaling pathways in eukaryotes. Recent advances in cancer research have rendered polysialyltransferases important drug targets because polysialic acid contributes to cancer cell progression, metastasis, and treatment of resistant tumors. To aid the development of high-throughput screening assays for polysialyltransferase inhibitors, we demonstrate that a previously developed class of fluorescent CMP-sialic acid mimetics for sialyltransferases has nanomolar affinities for oligo- and polysialyltransferases and can be used for the rapid screening of new polysialyltransferase inhibitors. We demonstrate that these CMP-Neu5Ac mimetics inhibit polysialylation in vitro and perform cell culture experiments, where we observe reduced polysialylation of NCAM. Furthermore, we describe the structural basis of CMP-Neu5Ac mimetics binding to the human oligosialyltransferase ST8SiaIII and extrapolate why their affinity is high for human polysialyltransferases. Our results show that this novel class of compounds is a promising tool for the development of potent and selective drugs against polysialyltransferase activity.


Subject(s)
Cytidine Monophosphate/analogs & derivatives , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Sialic Acids/chemistry , Sialic Acids/pharmacology , Sialyltransferases/antagonists & inhibitors , Cell Line , Cytidine Monophosphate/chemistry , Cytidine Monophosphate/pharmacology , Drug Discovery , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Humans , Molecular Docking Simulation , Neural Cell Adhesion Molecules/metabolism , Sialic Acids/metabolism , Sialyltransferases/chemistry , Sialyltransferases/metabolism
2.
Proc Natl Acad Sci U S A ; 114(13): 3479-3484, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28289221

ABSTRACT

Nonsense mutations underlie about 10% of rare genetic disease cases. They introduce a premature termination codon (PTC) and prevent the formation of full-length protein. Pharmaceutical gentamicin, a mixture of several related aminoglycosides, is a frequently used antibiotic in humans that can induce PTC readthrough and suppress nonsense mutations at high concentrations. However, testing of gentamicin in clinical trials has shown that safe doses of this drug produce weak and variable readthrough activity that is insufficient for use as therapy. In this study we show that the major components of pharmaceutical gentamicin lack PTC readthrough activity but the minor component gentamicin B1 (B1) is a potent readthrough inducer. Molecular dynamics simulations reveal the importance of ring I of B1 in establishing a ribosome configuration that permits pairing of a near-cognate complex at a PTC. B1 induced readthrough at all three nonsense codons in cultured cancer cells with TP53 (tumor protein p53) mutations, in cells from patients with nonsense mutations in the TPP1 (tripeptidyl peptidase 1), DMD (dystrophin), SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), and COL7A1 (collagen type VII alpha 1 chain) genes, and in an in vivo tumor xenograft model. The B1 content of pharmaceutical gentamicin is highly variable and major gentamicins suppress the PTC readthrough activity of B1. Purified B1 provides a consistent and effective source of PTC readthrough activity to study the potential of nonsense suppression for treatment of rare genetic disorders.


Subject(s)
Anti-Bacterial Agents/pharmacology , Codon, Nonsense/genetics , Gentamicins/pharmacology , Mutation/drug effects , Aminopeptidases/genetics , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dystrophin/genetics , Gentamicins/chemistry , Humans , Serine Proteases/genetics , Tripeptidyl-Peptidase 1 , Tumor Suppressor Protein p53/genetics
3.
Mol Cell Biol ; 36(5): 820-31, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26711263

ABSTRACT

Biogenesis of the 12-subunit RNA polymerase II (Pol II) transcription complex requires so-called GPN-loop GTPases, but the function of these enzymes is unknown. Here we report the first crystal structure of a eukaryotic GPN-loop GTPase, the Saccharomyces cerevisiae enzyme Npa3 (a homolog of human GPN1, also called RPAP4, XAB1, and MBDin), and analyze its catalytic mechanism. The enzyme was trapped in a GDP-bound closed conformation and in a novel GTP analog-bound open conformation displaying a conserved hydrophobic pocket distant from the active site. We show that Npa3 has chaperone activity and interacts with hydrophobic peptide regions of Pol II subunits that form interfaces in the assembled Pol II complex. Biochemical results are consistent with a model that the hydrophobic pocket binds peptides and that this can allosterically stimulate GTPase activity and subsequent peptide release. These results suggest that GPN-loop GTPases are assembly chaperones for Pol II and other protein complexes.


Subject(s)
Monomeric GTP-Binding Proteins/chemistry , Monomeric GTP-Binding Proteins/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA Polymerase II/chemistry
4.
Proteins ; 83(10): 1849-58, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26219431

ABSTRACT

CTDK-I is a yeast kinase complex that phosphorylates the C-terminal repeat domain (CTD) of RNA polymerase II (Pol II) to promote transcription elongation. CTDK-I contains the cyclin-dependent kinase Ctk1 (homologous to human CDK9/CDK12), the cyclin Ctk2 (human cyclin K), and the yeast-specific subunit Ctk3, which is required for CTDK-I stability and activity. Here we predict that Ctk3 consists of a N-terminal CTD-interacting domain (CID) and a C-terminal three-helix bundle domain. We determine the X-ray crystal structure of the N-terminal domain of the Ctk3 homologue Lsg1 from the fission yeast Schizosaccharomyces pombe at 2.0 Å resolution. The structure reveals eight helices arranged into a right-handed superhelical fold that resembles the CID domain present in transcription termination factors Pcf11, Nrd1, and Rtt103. Ctk3 however shows different surface properties and no binding to CTD peptides. Together with the known structure of Ctk1 and Ctk2 homologues, our results lead to a molecular framework for analyzing the structure and function of the CTDK-I complex.


Subject(s)
Protein Kinases/chemistry , Protein Kinases/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Alignment
5.
Nature ; 493(7432): 437-40, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23151482

ABSTRACT

The general transcription factor (TF) IIB is required for RNA polymerase (Pol) II initiation and extends with its B-reader element into the Pol II active centre cleft. Low-resolution structures of the Pol II-TFIIB complex indicated how TFIIB functions in DNA recruitment, but they lacked nucleic acids and half of the B-reader, leaving other TFIIB functions enigmatic. Here we report crystal structures of the Pol II-TFIIB complex from the yeast Saccharomyces cerevisiae at 3.4 Å resolution and of an initially transcribing complex that additionally contains the DNA template and a 6-nucleotide RNA product. The structures reveal the entire B-reader and protein-nucleic acid interactions, and together with functional data lead to a more complete understanding of transcription initiation. TFIIB partially closes the polymerase cleft to position DNA and assist in its opening. The B-reader does not reach the active site but binds the DNA template strand upstream to assist in the recognition of the initiator sequence and in positioning the transcription start site. TFIIB rearranges active-site residues, induces binding of the catalytic metal ion B, and stimulates initial RNA synthesis allosterically. TFIIB then prevents the emerging DNA-RNA hybrid duplex from tilting, which would impair RNA synthesis. When the RNA grows beyond 6 nucleotides, it is separated from DNA and is directed to its exit tunnel by the B-reader loop. Once the RNA grows to 12-13 nucleotides, it clashes with TFIIB, triggering TFIIB displacement and elongation complex formation. Similar mechanisms may underlie all cellular transcription because all eukaryotic and archaeal RNA polymerases use TFIIB-like factors, and the bacterial initiation factor sigma has TFIIB-like topology and contains the loop region 3.2 that resembles the B-reader loop in location, charge and function. TFIIB and its counterparts may thus account for the two fundamental properties that distinguish RNA from DNA polymerases: primer-independent chain initiation and product separation from the template.


Subject(s)
RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Transcription Factor TFIIB/chemistry , Transcription Factor TFIIB/metabolism , Transcription Initiation, Genetic , Amino Acid Sequence , Biocatalysis , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/metabolism , Saccharomyces cerevisiae/enzymology , Structure-Activity Relationship , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...