Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 11(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37893787

ABSTRACT

Using a discrete-event simulation (DES) model, the current disaster plan regarding the allocation of multiple injured patients from a mass casualty incident was evaluated for an acute specialty hospital in Vienna, Austria. With the current resources available, the results showed that the number of severely injured patients currently assigned might have to wait longer than the medically justifiable limit for lifesaving surgery. Furthermore, policy scenarios of increasing staff and/or equipment did not lead to a sufficient improvement of this outcome measure. However, the mean target waiting time for critical treatment of moderately injured patients could be met under all policy scenarios. Using simulation-optimization, an optimal staff-mix could be found for an illustrative policy scenario. In addition, a multiple regression model of simulated staff-mix policy scenarios identified staff categories (number of radiologists and rotation physicians) with the highest impact on waiting time and survival. In the short term, the current hospital disaster plan should consider reducing the number of severely injured patients to be treated. In the long term, we would recommend expanding hospital capacity-in terms of both structural and human resources as well as improving regional disaster planning. Policymakers should also consider the limitations of this study when applying these insights to different areas or circumstances.

2.
Health Care Manag Sci ; 15(3): 254-69, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22653522

ABSTRACT

Due to an increasing number of mass casualty incidents, which are generally complex and unique in nature, we suggest that decision makers consider operations research-based policy models to help prepare emergency staff for improved planning and scheduling at the emergency site. We thus develop a discrete-event simulation policy model, which is currently being applied by disaster-responsive ambulance services in Austria. By evaluating realistic scenarios, our policy model is shown to enhance the scheduling and outcomes at operative and online levels. The proposed scenarios range from small, simple, and urban to rather large, complex, remote mass casualty emergencies. Furthermore, the organization of an advanced medical post can be improved on a strategic level to increase rescue quality, including enhanced survival of injured victims. In particular, we consider a realistic mass casualty incident at a brewery relative to other exemplary disasters. Based on a variety of such situations, we derive general policy implications at both the macro (e.g., strategic rescue policy) and micro (e.g., operative and online scheduling strategies at the emergency site) levels.


Subject(s)
Ambulances/organization & administration , Decision Making , Disaster Planning/organization & administration , Mass Casualty Incidents , Ambulances/supply & distribution , Computer Simulation , Decision Support Techniques , Disaster Planning/methods , Health Care Rationing/organization & administration , Health Status , Humans , Triage/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL
...