Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(34): eadj1895, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37624898

ABSTRACT

The proposed mechanisms of sleep-dependent memory consolidation involve the overnight regulation of neural activity at both synaptic and whole-network levels. Now, there is a lack of in vivo data in humans elucidating if, and how, sleep and its varied stages balance neural activity, and if such recalibration benefits memory. We combined electrophysiology with in vivo two-photon calcium imaging in rodents as well as intracranial and scalp electroencephalography (EEG) in humans to reveal a key role for non-oscillatory brain activity during rapid eye movement (REM) sleep to mediate sleep-dependent recalibration of neural population dynamics. The extent of this REM sleep recalibration predicted the success of overnight memory consolidation, expressly the modulation of hippocampal-neocortical activity, favoring remembering rather than forgetting. The findings describe a non-oscillatory mechanism how human REM sleep modulates neural population activity to enhance long-term memory.


Subject(s)
Sleep, REM , Sleep , Humans , Mental Recall , Calcium , Cardiac Electrophysiology
2.
Cell Rep Med ; 4(7): 101123, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37467713

ABSTRACT

Vallat et al.1 demonstrate a positive association between the coupling of slow oscillations and sleep spindles, neurophysiological markers of NREM sleep, and next-morning glucose homeostasis. Extended findings in an independent dataset raise intriguing questions about its directionality and consistency.


Subject(s)
Electroencephalography , Sleep , Humans , Sleep/physiology , Brain , Homeostasis
3.
Neuron ; 111(7): 1050-1075, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37023710

ABSTRACT

Although long-term memory consolidation is supported by sleep, it is unclear how it differs from that during wakefulness. Our review, focusing on recent advances in the field, identifies the repeated replay of neuronal firing patterns as a basic mechanism triggering consolidation during sleep and wakefulness. During sleep, memory replay occurs during slow-wave sleep (SWS) in hippocampal assemblies together with ripples, thalamic spindles, neocortical slow oscillations, and noradrenergic activity. Here, hippocampal replay likely favors the transformation of hippocampus-dependent episodic memory into schema-like neocortical memory. REM sleep following SWS might balance local synaptic rescaling accompanying memory transformation with a sleep-dependent homeostatic process of global synaptic renormalization. Sleep-dependent memory transformation is intensified during early development despite the immaturity of the hippocampus. Overall, beyond its greater efficacy, sleep consolidation differs from wake consolidation mainly in that it is supported, rather than impaired, by spontaneous hippocampal replay activity possibly gating memory formation in neocortex.


Subject(s)
Memory Consolidation , Sleep, Slow-Wave , Memory Consolidation/physiology , Sleep/physiology , Memory, Long-Term , Hippocampus/physiology
4.
Sleep ; 46(5)2023 05 10.
Article in English | MEDLINE | ID: mdl-36680770
5.
Proc Natl Acad Sci U S A ; 119(34): e2203165119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969775

ABSTRACT

Memory consolidation is promoted by sleep. However, there is also evidence for consolidation into long-term memory during wakefulness via processes that preferentially affect nonhippocampal representations. We compared, in rats, the effects of 2-h postencoding periods of sleep and wakefulness on the formation of long-term memory for objects and their associated environmental contexts. We employed a novel-object recognition (NOR) task, using object exploration and exploratory rearing as behavioral indicators of these memories. Remote recall testing (after 1 wk) confirmed significant long-term NOR memory under both conditions, with NOR memory after sleep predicted by the occurrence of EEG spindle-slow oscillation coupling. Rats in the sleep group decreased their exploratory rearing at recall testing, revealing successful recall of the environmental context. By contrast, rats that stayed awake after encoding showed equally high levels of rearing upon remote testing as during encoding, indicating that context memory was lost. Disruption of hippocampal function during the postencoding interval (by muscimol administration) suppressed long-term NOR memory together with context memory formation when animals slept, but enhanced NOR memory when they were awake during this interval. Testing remote recall in a context different from that during encoding impaired NOR memory in the sleep condition, while exploratory rearing was increased. By contrast, NOR memory in the wake rats was preserved and actually superior to that after sleep. Our findings indicate two distinct modes of long-term memory formation: Sleep consolidation is hippocampus dependent and implicates event-context binding, whereas wake consolidation is impaired by hippocampal activation and strengthens context-independent representations.


Subject(s)
Memory Consolidation , Memory, Long-Term , Sleep , Wakefulness , Animals , Memory Consolidation/physiology , Memory, Long-Term/physiology , Mental Recall/physiology , Rats , Sleep/physiology , Wakefulness/physiology
6.
J Neurosci ; 41(19): 4212-4222, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33833082

ABSTRACT

Sleep shapes cortical network activity, fostering global homeostatic downregulation of excitability while maintaining or even upregulating excitability in selected networks in a manner that supports memory consolidation. Here, we used two-photon calcium imaging of cortical layer 2/3 neurons in sleeping male mice to examine how these seemingly opposing dynamics are balanced in cortical networks. During slow-wave sleep (SWS) episodes, mean calcium activity of excitatory pyramidal (Pyr) cells decreased. Simultaneously, however, variance in Pyr population calcium activity increased, contradicting the notion of a homogenous downregulation of network activity. Indeed, we identified a subpopulation of Pyr cells distinctly upregulating calcium activity during SWS, which were highly active during sleep spindles known to support mnemonic processing. Rapid eye movement (REM) episodes following SWS were associated with a general downregulation of Pyr cells, including the subpopulation of Pyr cells active during spindles, which persisted into following stages of sleep and wakefulness. Parvalbumin-positive inhibitory interneurons (PV-In) showed an increase in calcium activity during SWS episodes, while activity remained unchanged during REM sleep episodes. This supports the view that downregulation of Pyr calcium activity during SWS results from increased somatic inhibition via PV-In, whereas downregulation during REM sleep is achieved independently of such inhibitory activity. Overall, our findings show that SWS enables upregulation of select cortical circuits (likely those which were involved in mnemonic processing) through a spindle-related process, whereas REM sleep mediates general downregulation, possibly through synaptic re-normalization.SIGNIFICANCE STATEMENT Sleep is thought to globally downregulate cortical excitability and, concurrently, to upregulate synaptic connections in neuron ensembles with newly encoded memory, with upregulation representing a function of sleep spindles. Using in vivo two-photon calcium imaging in combination with surface EEG recordings, we classified cells based on their calcium activity during sleep spindles. Spindle-active pyramidal (Pyr) cells persistently increased calcium activity during slow-wave sleep (SWS) episodes while spindle-inactive cells decreased calcium activity. Subsequent rapid eye movement (REM) sleep episodes profoundly reduced calcium activity in both cell clusters. Results indicate that SWS allows for a spindle-related differential upregulation of ensembles whereas REM sleep functions to globally downregulate networks.


Subject(s)
Calcium Signaling/physiology , Cerebral Cortex/physiology , Nerve Net/physiology , Sleep, REM/physiology , Sleep, Slow-Wave/physiology , Animals , Electroencephalography , Electromyography , Male , Memory Consolidation , Mice , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Neuroimaging , Neurons/physiology , Parvalbumins , Pyramidal Cells/physiology
7.
Eur J Neurosci ; 52(12): 4762-4778, 2020 12.
Article in English | MEDLINE | ID: mdl-32654249

ABSTRACT

The systems consolidation of memory during slow-wave sleep (SWS) is thought to rely on a dialogue between hippocampus and neocortex that is regulated by an interaction between neocortical slow oscillations (SOs), thalamic spindles and hippocampal ripples. Here, we examined the occurrence rates of and the temporal relationships between these oscillatory events in rats, to identify the possible direction of interaction between these events under natural conditions. To facilitate comparisons with findings in humans, we combined frontal and parietal surface EEG with local field potential (LFP) recordings in medial prefrontal cortex (mPFC) and dorsal hippocampus (dHC). Consistent with a top-down driving influence, EEG SO upstates were associated with an increase in spindles and hippocampal ripples. This increase was missing in SO upstates identified in mPFC recordings. Ripples in dHC recordings always followed the onset of spindles consistent with spindles timing ripple occurrence. Comparing ripple activity during co-occurring SO-spindle events with that during isolated SOs or spindles, suggested that ripple dynamics during SO-spindle events are mainly determined by the spindle, with only the SO downstate providing a global inhibitory signal to both thalamus and hippocampus. As to bottom-up influences, we found an increase in hippocampal ripples ~200 ms before the SO downstate, but no similar increase of spindles preceding SO downstates. Overall, the temporal pattern is consistent with a loop-like scenario where, top-down, SOs can trigger thalamic spindles which, in turn, regulate the occurrence of hippocampal ripples. Ripples, bottom-up, and independent from thalamic spindles, can contribute to the emergence of neocortical SOs.


Subject(s)
Electroencephalography , Neocortex , Animals , Hippocampus , Memory , Rats , Sleep
8.
Neurobiol Learn Mem ; 173: 107245, 2020 09.
Article in English | MEDLINE | ID: mdl-32442599

ABSTRACT

Ample evidence has indicated a beneficial role of sleep, and particularly of slow wave sleep (SWS) in memory consolidation. However, how basic features of sleep, its depth and duration, contribute to this process remained elusive. Here, we investigated spatial object-place recognition (OPR) memory in rats, to systematically dissociate effects of sleep depth and duration on the formation of recent and remote hippocampus-dependent memory. Encoding of the spatial configuration was followed by an experimental post-encoding period of either 2 or 4 h, during which the rats had either "regular sleep", "deeper sleep", or were kept awake. A deeper sleep was achieved by an extended habituation of the rats to the sleep environment. Retrieval was tested either immediately after the 2-hour post-encoding period (recent memory test) or 1 week later (remote memory test). Deeper sleep expressed itself in a selective increase in the time spent in SWS, and in numbers of slow oscillations, spindles, and hippocampal ripples during SWS, whereas preREM and REM sleep were not affected. At the recent test, OPR memory was preserved only after sleep, but independent of its depth. At the remote test, however, OPR memory was preserved only after deeper sleep, whereas the wake and the regularly sleeping rats did not show remote OPR memory, even with the longer 4-h post-encoding period. Our results indicate that, rather than a longer duration, deeper sleep, i.e., a longer time in SWS together with enhanced oscillatory signatures of mnemonic processing during this sleep stage, occurring within a 2-hour window after encoding, is the factor that makes hippocampus-dependent memory more persistent.


Subject(s)
Hippocampus/physiology , Sleep/physiology , Spatial Memory/physiology , Animals , Electroencephalography , Male , Memory Consolidation/physiology , Rats , Rats, Long-Evans
9.
Neuron ; 106(2): 204-206, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32325054

ABSTRACT

In this issue of Neuron, Gridchyn et al. (2020) show that by inhibiting memory reactivations of hippocampal place maps during rest, these maps are lost but re-emerge during re-learning, suggesting that alternative extrahippocampal representations can reinstate the original hippocampal map.


Subject(s)
Memory Consolidation , Hippocampus , Humans , Memory , Memory Disorders , Neurons
10.
Nat Neurosci ; 22(10): 1743-1744, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31511701

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Nat Neurosci ; 22(10): 1598-1610, 2019 10.
Article in English | MEDLINE | ID: mdl-31451802

ABSTRACT

Long-term memory formation is a major function of sleep. Based on evidence from neurophysiological and behavioral studies mainly in humans and rodents, we consider the formation of long-term memory during sleep as an active systems consolidation process that is embedded in a process of global synaptic downscaling. Repeated neuronal replay of representations originating from the hippocampus during slow-wave sleep leads to a gradual transformation and integration of representations in neocortical networks. We highlight three features of this process: (i) hippocampal replay that, by capturing episodic memory aspects, drives consolidation of both hippocampus-dependent and non-hippocampus-dependent memory; (ii) brain oscillations hallmarking slow-wave and rapid-eye movement sleep that provide mechanisms for regulating both information flow across distant brain networks and local synaptic plasticity; and (iii) qualitative transformations of memories during systems consolidation resulting in abstracted, gist-like representations.


Subject(s)
Memory Consolidation/physiology , Sleep/physiology , Animals , Hippocampus/physiology , Humans , Memory, Long-Term/physiology
12.
Sleep ; 42(7)2019 07 08.
Article in English | MEDLINE | ID: mdl-31100149

ABSTRACT

Decades of neurobehavioral research has linked sleep-associated rhythms in various brain areas to improvements in cognitive performance. However, it remains unclear what synaptic changes might underlie sleep-dependent declarative memory consolidation and procedural task improvement, and why these same changes appear not to occur across a similar interval of wake. Here we describe recent research on how one specific feature of sleep-network rhythms characteristic of rapid eye movement and non-rapid eye movement-could drive synaptic strengthening or weakening in specific brain circuits. We provide an overview of how these rhythms could affect synaptic plasticity individually and in concert. We also present an overarching hypothesis for how all network rhythms occurring across the sleeping brain could aid in encoding new information in neural circuits.


Subject(s)
Memory Consolidation/physiology , Neuronal Plasticity/physiology , Sleep, REM/physiology , Sleep, Slow-Wave/physiology , Brain/physiology , Brain Waves/physiology , Humans , Memory/physiology
13.
Nat Neurosci ; 22(2): 149-151, 2019 02.
Article in English | MEDLINE | ID: mdl-30617259
14.
Nature ; 564(7734): 109-113, 2018 12.
Article in English | MEDLINE | ID: mdl-30429612

ABSTRACT

There is a long-standing division in memory research between hippocampus-dependent memory and non-hippocampus-dependent memory, as only the latter can be acquired and retrieved in the absence of normal hippocampal function1,2. Consolidation of hippocampus-dependent memory, in particular, is strongly supported by sleep3-5. Here we show that the formation of long-term representations in a rat model of non-hippocampus-dependent memory depends not only on sleep but also on activation of a hippocampus-dependent mechanism during sleep. Rats encoded non-hippocampus-dependent (novel-object recognition6-8) and hippocampus-dependent (object-place recognition) memories before a two-hour period of sleep or wakefulness. Memory was tested either immediately thereafter or remotely (after one or three weeks). Whereas object-place recognition memory was stronger for rats that had slept after encoding (rather than being awake) at both immediate and remote testing, novel-object recognition memory profited from sleep only three weeks after encoding, at which point it was preserved in rats that had slept after encoding but not in those that had been awake. Notably, inactivation of the hippocampus during post-encoding sleep by intrahippocampal injection of muscimol abolished the sleep-induced enhancement of remote novel-object recognition memory. By contrast, muscimol injection before remote retrieval or memory encoding had no effect on test performance, confirming that the encoding and retrieval of novel-object recognition memory are hippocampus-independent. Remote novel-object recognition memory was associated with spindle activity during post-encoding slow-wave sleep, consistent with the view that neuronal memory replay during slow-wave sleep contributes to long-term memory formation. Our results indicate that the hippocampus has an important role in long-term consolidation during sleep even for memories that have previously been considered hippocampus-independent.


Subject(s)
Hippocampus/physiology , Memory Consolidation/physiology , Sleep/physiology , Animals , Male , Rats , Rats, Long-Evans , Recognition, Psychology/physiology , Sleep, Slow-Wave/physiology , Space Perception/physiology , Wakefulness/physiology
15.
Proc Natl Acad Sci U S A ; 115(39): E9220-E9229, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30209214

ABSTRACT

Slow oscillations and sleep spindles are hallmarks of the EEG during slow-wave sleep (SWS). Both oscillatory events, especially when co-occurring in the constellation of spindles nesting in the slow oscillation upstate, are considered to support memory formation and underlying synaptic plasticity. The regulatory mechanisms of this function at the circuit level are poorly understood. Here, using two-photon imaging in mice, we relate EEG-recorded slow oscillations and spindles to calcium signals recorded from the soma of cortical putative pyramidal-like (Pyr) cells and neighboring parvalbumin-positive interneurons (PV-Ins) or somatostatin-positive interneurons (SOM-Ins). Pyr calcium activity was increased more than threefold when spindles co-occurred with slow oscillation upstates compared with slow oscillations or spindles occurring in isolation. Independent of whether or not a spindle was nested in the slow oscillation upstate, the slow oscillation downstate was preceded by enhanced calcium signal in SOM-Ins that vanished during the upstate, whereas spindles were associated with strongly increased PV-In calcium activity. Additional wide-field calcium imaging of Pyr cells confirmed the enhanced calcium activity and its widespread topography associated with spindles nested in slow oscillation upstates. In conclusion, when spindles are nested in slow oscillation upstates, maximum Pyr activity appears to concur with strong perisomatic inhibition of Pyr cells via PV-Ins and low dendritic inhibition via SOM-Ins (i.e., conditions that might optimize synaptic plasticity within local cortical circuits).


Subject(s)
Biological Clocks/physiology , Calcium Signaling/physiology , Cerebral Cortex/metabolism , Nerve Net/metabolism , Sleep Stages/physiology , Animals , Cerebral Cortex/cytology , Interneurons/cytology , Interneurons/metabolism , Mice , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Nerve Net/cytology , Pyramidal Cells/cytology , Pyramidal Cells/metabolism
16.
Sleep ; 41(6)2018 06 01.
Article in English | MEDLINE | ID: mdl-29893972

ABSTRACT

Mammalian sleep comprises the stages of slow-wave sleep (SWS) and rapid eye movement (REM) sleep. Additionally, a transition state is often discriminated which in rodents is termed intermediate stage (IS). Although these sleep stages are thought of as unitary phenomena affecting the whole brain in a congruent fashion, recent findings have suggested that sleep stages can also appear locally restricted to specific networks and regions. Here, we compared in rats sleep stages and their transitions between neocortex and hippocampus. We simultaneously recorded the electroencephalogram (EEG) from skull electrodes over frontal and parietal cortex and the local field potential (LFP) from the medial prefrontal cortex and dorsal hippocampus. Results indicate a high congruence in the occurrence of sleep and SWS (>96.5%) at the different recording sites. Congruence was lower for REM sleep (>87%) and lowest for IS (<36.5%). Incongruences occurring at sleep stage transitions were most pronounced for REM sleep which in 36.6 per cent of all epochs started earlier in hippocampal LFP recordings than in the other recordings, with an average interval of 17.2 ± 1.1 s between REM onset in the hippocampal LFP and the parietal EEG (p < 0.001). Earlier REM onset in the hippocampus was paralleled by a decrease in muscle tone, another hallmark of REM sleep. These findings indicate a region-specific regulation of REM sleep which has clear implications not only for our understanding of the organization of sleep, but possibly also for the functions, e.g. in memory formation, that have been associated with REM sleep.


Subject(s)
Hippocampus/physiology , Neocortex/physiology , Sleep Stages/physiology , Animals , Electroencephalography/methods , Male , Rats , Rats, Long-Evans
17.
Front Neural Circuits ; 11: 65, 2017.
Article in English | MEDLINE | ID: mdl-28966578

ABSTRACT

Sleep is thought to be involved in the regulation of synaptic plasticity in two ways: by enhancing local plastic processes underlying the consolidation of specific memories and by supporting global synaptic homeostasis. Here, we briefly summarize recent structural and functional studies examining sleep-associated changes in synaptic morphology and neural excitability. These studies point to a global down-scaling of synaptic strength across sleep while a subset of synapses increases in strength. Similarly, neuronal excitability on average decreases across sleep, whereas subsets of neurons increase firing rates across sleep. Whether synapse formation and excitability is down or upregulated across sleep appears to partly depend on the cell's activity level during wakefulness. Processes of memory-specific upregulation of synapse formation and excitability are observed during slow wave sleep (SWS), whereas global downregulation resulting in elimination of synapses and decreased neural firing is linked to rapid eye movement sleep (REM sleep). Studies of the excitation/inhibition balance in cortical circuits suggest that both processes are connected to a specific inhibitory regulation of cortical principal neurons, characterized by an enhanced perisomatic inhibition via parvalbumin positive (PV+) cells, together with a release from dendritic inhibition by somatostatin positive (SOM+) cells. Such shift towards increased perisomatic inhibition of principal cells appears to be a general motif which underlies the plastic synaptic changes observed during sleep, regardless of whether towards up or downregulation.


Subject(s)
Cerebral Cortex/physiology , Nerve Net/physiology , Neuronal Plasticity/physiology , Sleep/physiology , Synapses/physiology , Animals , Parvalbumins/metabolism
18.
Curr Biol ; 26(20): 2739-2749, 2016 10 24.
Article in English | MEDLINE | ID: mdl-27693142

ABSTRACT

Sleep is characterized by unique patterns of cortical activity alternating between the stages of slow-wave sleep (SWS) and rapid-eye movement (REM) sleep. How these patterns relate to the balanced activity of excitatory pyramidal cells and inhibitory interneurons in cortical circuits is unknown. We investigated cortical network activity during wakefulness, SWS, and REM sleep globally and locally using in vivo calcium imaging in mice. Wide-field imaging revealed a reduction in pyramidal cell activity during SWS compared with wakefulness and, unexpectedly, a further profound reduction in activity during REM sleep. Two-photon imaging on local circuits showed that this suppression of activity during REM sleep was accompanied by activation of parvalbumin (PV)+ interneurons, but not of somatostatin (SOM)+ interneurons. PV+ interneurons most active during wakefulness were also most active during REM sleep. Our results reveal a sleep-stage-specific regulation of the cortical excitation/inhibition balance, with PV+ interneurons conveying maximum inhibition during REM sleep, which might help shape memories in these networks.


Subject(s)
Interneurons/physiology , Pyramidal Cells/physiology , Sleep Stages/physiology , Wakefulness/physiology , Animals , Male , Mice , Parvalbumins/metabolism , Sleep, REM/physiology , Somatostatin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...