Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Rev Biochem ; 92: 81-113, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37040775

ABSTRACT

Ultraviolet (UV) irradiation and other genotoxic stresses induce bulky DNA lesions, which threaten genome stability and cell viability. Cells have evolved two main repair pathways to remove such lesions: global genome nucleotide excision repair (GG-NER) and transcription-coupled nucleotide excision repair (TC-NER). The modes by which these subpathways recognize DNA lesions are distinct, but they converge onto the same downstream steps for DNA repair. Here, we first summarize the current understanding of these repair mechanisms, specifically focusing on the roles of stalled RNA polymerase II, Cockayne syndrome protein B (CSB), CSA and UV-stimulated scaffold protein A (UVSSA) in TC-NER. We also discuss the intriguing role of protein ubiquitylation in this process. Additionally, we highlight key aspects of the effect of UV irradiation on transcription and describe the role of signaling cascades in orchestrating this response. Finally, we describe the pathogenic mechanisms underlying xeroderma pigmentosum and Cockayne syndrome, the two main diseases linked to mutations in NER factors.


Subject(s)
Cockayne Syndrome , Humans , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Transcription, Genetic , DNA Repair , DNA Damage , DNA/genetics , DNA/metabolism , Carrier Proteins/metabolism
2.
Nucleic Acids Res ; 48(11): 6068-6080, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32374842

ABSTRACT

We have previously found that UV-induced DNA damage causes hyperphosphorylation of the carboxy terminal domain (CTD) of RNA polymerase II (RNAPII), inhibition of transcriptional elongation and changes in alternative splicing (AS) due to kinetic coupling between transcription and splicing. In an unbiased search for protein kinases involved in the AS response to DNA damage, we have identified glycogen synthase kinase 3 (GSK-3) as an unforeseen participant. Unlike Cdk9 inhibition, GSK-3 inhibition only prevents CTD hyperphosphorylation triggered by UV but not basal phosphorylation. This effect is not due to differential degradation of the phospho-CTD isoforms and can be reproduced, at the AS level, by overexpression of a kinase-dead GSK-3 dominant negative mutant. GSK-3 inhibition abrogates both the reduction in RNAPII elongation and changes in AS elicited by UV. We show that GSK-3 phosphorylates the CTD in vitro, but preferentially when the substrate is previously phosphorylated, consistently with the requirement of a priming phosphorylation reported for GSK-3 efficacy. In line with a role for GSK-3 in the response to DNA damage, GSK-3 inhibition prevents UV-induced apoptosis. In summary, we uncover a novel role for a widely studied kinase in key steps of eukaryotic transcription and pre-mRNA processing.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Protein Kinases/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Alternative Splicing/genetics , Alternative Splicing/radiation effects , Apoptosis/radiation effects , DNA Damage/radiation effects , Fluorescence , Genes, Dominant , Genes, Reporter , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , HEK293 Cells , HeLa Cells , Histones/metabolism , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Phosphorylation/radiation effects , Protein Kinases/genetics , Transcription, Genetic/radiation effects , Ultraviolet Rays
3.
Genet Mol Biol ; 43(1 suppl. 1): e20190111, 2020.
Article in English | MEDLINE | ID: mdl-32236390

ABSTRACT

Splicing, the process that catalyzes intron removal and flanking exon ligation, can occur in different ways (alternative splicing) in immature RNAs transcribed from a single gene. In order to adapt to a particular context, cells modulate not only the quantity but also the quality (alternative isoforms) of their transcriptome. Since 95% of the human coding genome is subjected to alternative splicing regulation, it is expected that many cellular pathways are modulated by alternative splicing, as is the case for the DNA damage response. Moreover, recent evidence demonstrates that upon a genotoxic insult, classical DNA damage response kinases such as ATM, ATR and DNA-PK orchestrate the gene expression response therefore modulating alternative splicing which, in a reciprocal way, shapes the response to a damaging agent.

4.
Cell Rep ; 18(12): 2868-2879, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28329680

ABSTRACT

We have previously found that UV irradiation promotes RNA polymerase II (RNAPII) hyperphosphorylation and subsequent changes in alternative splicing (AS). We show now that UV-induced DNA damage is not only necessary but sufficient to trigger the AS response and that photolyase-mediated removal of the most abundant class of pyrimidine dimers (PDs) abrogates the global response to UV. We demonstrate that, in keratinocytes, RNAPII is the target, but not a sensor, of the signaling cascade initiated by PDs. The UV effect is enhanced by inhibition of gap-filling DNA synthesis, the last step in the nucleotide excision repair pathway (NER), and reduced by the absence of XPE, the main NER sensor of PDs. The mechanism involves activation of the protein kinase ATR that mediates the UV-induced RNAPII hyperphosphorylation. Our results define the sequence UV-PDs-NER-ATR-RNAPII-AS as a pathway linking DNA damage repair to the control of both RNAPII phosphorylation and AS regulation.


Subject(s)
Alternative Splicing/genetics , DNA Repair , Pyrimidine Dimers/metabolism , Ultraviolet Rays , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA/metabolism , DNA Repair/genetics , Humans , Keratinocytes/metabolism , Keratinocytes/radiation effects , Phosphorylation/radiation effects , RNA Polymerase II/metabolism , Skin/cytology , Skin/radiation effects , Transcription, Genetic/radiation effects
5.
Synth Biol (Oxf) ; 2(1): ysx006, 2017 Jan.
Article in English | MEDLINE | ID: mdl-32995507

ABSTRACT

The diversity and flexibility of life offers a wide variety of molecules and systems useful for biosensing. A biosensor device should be robust, specific and reliable. Inorganic arsenic is a highly toxic water contaminant with worldwide distribution that poses a threat to public health. With the goal of developing an arsenic biosensor, we designed an incoherent feed-forward loop (I-FFL) genetic circuit to correlate its output pulse with the input signal in a relatively time-independent manner. The system was conceived exclusively based on the available BioBricks in the iGEM Registry of Standard Biological Parts. The expected behavior in silico was achieved; upon arsenic addition, the system generates a short-delayed reporter protein pulse that is dose dependent to the contaminant levels. This work is an example of the power and variety of the iGEM Registry of Standard Biological Parts, which can be reused in different sophisticated system designs like I-FFLs. Besides the scientific results, one of the main impacts of this synthetic biology project is the influence it had on team's members training and career choices which are summarized at the end of this article.

6.
J Mol Biol ; 428(12): 2636-2651, 2016 Jun 19.
Article in English | MEDLINE | ID: mdl-26979557

ABSTRACT

Multicellular organisms must ensure genome integrity to prevent accumulation of mutations, cell death, and cancer. The DNA damage response (DDR) is a complex network that senses, signals, and executes multiple programs including DNA repair, cell cycle arrest, senescence, and apoptosis. This entails regulation of a variety of cellular processes: DNA replication and transcription, RNA processing, mRNA translation and turnover, and post-translational modification, degradation, and relocalization of proteins. Accumulated evidence over the past decades has shown that RNAs and RNA metabolism are both regulators and regulated actors of the DDR. This review aims to present a comprehensive overview of the current knowledge on the many interactions between the DNA damage and RNA fields.


Subject(s)
DNA Damage/genetics , RNA/genetics , DNA Repair/genetics , Gene Expression/genetics , Humans
7.
FEBS Lett ; 589(22): 3370-8, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26296319

ABSTRACT

Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.


Subject(s)
Alternative Splicing , Chromatin/chemistry , Chromatin/genetics , DNA/chemistry , DNA/genetics , Animals , Humans , Transcription, Genetic/genetics
8.
Biochim Biophys Acta ; 1829(1): 134-40, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22975042

ABSTRACT

Alternative splicing has emerged as a key contributor to proteome diversity, highlighting the importance of understanding its regulation. In recent years it became apparent that splicing is predominantly cotranscriptional, allowing for crosstalk between these two nuclear processes. We discuss some of the links between transcription and splicing, with special emphasis on the role played by transcription elongation in the regulation of alternative splicing events and in particular the kinetic model of alternative splicing regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.


Subject(s)
Alternative Splicing/physiology , Transcription Elongation, Genetic/physiology , Alternative Splicing/genetics , Animals , Chromatin/chemistry , Chromatin/metabolism , Chromatin/physiology , Humans , Kinetics , Models, Biological , Protein Binding/physiology , RNA Polymerase II/metabolism , RNA Polymerase II/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...