Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(45): 50836-50848, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36331877

ABSTRACT

Investments in the transfer and storage of thermal energy along with renewable energy sources strengthen health and economic infrastructure. These factors intensify energy diversification and the more rapid post-COVID recovery of economies. Ionanofluids (INFs) composed of long multiwalled carbon nanotubes (MWCNTs) rich in sp2-hybridized atoms and ionic liquids (ILs) display excellent thermal conductivity enhancement with respect to the pure IL, high thermal stability, and attractive rheology. However, the influence of the morphology, physicochemistry of nanoparticles and the IL-nanostructure interactions on the mechanism of heat transfer and rheological properties of INFs remain unidentified. Here, we show that intertube nanolayer coalescence, supported by 1D geometry assembly, leads to the subzipping of MWCNT bundles and formation of thermal bridges toward 3D networks in the whole INF volume. We identified stable networks of straight and bent MWCNTs separated by a layer of ions at the junctions. We found that the interactions between the ultrasonication-induced breaking nanotubes and the cations were covalent in nature. Furthermore, we found that the ionic layer imposed by close MWCNT surfaces favored enrichment of the cis conformer of the bis(trifluoromethylsulfonyl)imide anion. Our results demonstrate how the molecular perfection of the MWCNT structure with its supramolecular arrangement affects the extraordinary thermal conductivity enhancement of INFs. Thus, we gave the realistic description of the interactions at the IL-CNT interface with its (super)structure and chemistry as well as the molecular structure of the continuous phase. We anticipate our results to be a starting point for more complex studies on the supramolecular zipping mechanism. For example, ionically functionalized MWCNTs toward polyionic systems─of projected and controlled nanolayers─could enable the design of even more efficient heat-transfer fluids and miniaturization of flexible electronics.

2.
Molecules ; 25(18)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32962096

ABSTRACT

Ionic liquids have been suggested as new engineering fluids, namely in the area of heat transfer, as alternatives to current biphenyl and diphenyl oxide, alkylated aromatics and dimethyl polysiloxane oils, which degrade above 200 °C and pose some environmental problems. Recently, we have proposed 1-ethyl-3-methylimidazolium methanesulfonate, [C2mim][CH3SO3], as a new heat transfer fluid, because of its thermophysical and toxicological properties. However, there are some interesting points raised in this work, namely the possibility of the existence of liquid metastability below the melting point (303 K) or second order-disorder transitions (l-type) before reaching the calorimetric freezing point. This paper analyses in more detail this zone of the phase diagram of the pure fluid, by reporting accurate thermal-conductivity measurements between 278 and 355 K with an estimated uncertainty of 2% at a 95% confidence level. A new value of the melting temperature is also reported, Tmelt = 307.8 ± 1 K. Results obtained support liquid metastability behaviour in the solid-phase region and permit the use of this ionic liquid at a heat transfer fluid at temperatures below its melting point. Thermal conductivity models based on Bridgman theory and estimation formulas were also used in this work, failing to predict the experimental data within its uncertainty.


Subject(s)
Imidazoles/chemistry , Ionic Liquids/chemistry , Thermal Conductivity , Transition Temperature
3.
Phys Chem Chem Phys ; 19(26): 17075-17087, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28621790

ABSTRACT

We used molecular dynamics simulation to study the effect of suspended carbon nanomaterials, nanotubes and graphene sheets, on the thermal conductivity of ionic liquids, an issue related to understanding the properties of nanofluids. One important aspect that we developed is an atomistic model of the interactions between the organic ions and carbon nanomaterials, so we did not rely on existing force fields for small organic molecules or assume simple combining rules to describe the interactions at the liquid/material interface. Instead, we used quantum calculations with a density functional suitable for non-covalent interactions to parameterize an interaction model, including van der Waals terms and also atomic partial charges on the materials. We fitted a n-m interaction potential function with n values of 9 or 10 and m values between 5 and 8, so a 12-6 Lennard-Jones function would not fit the quantum calculations. For the atoms of ionic liquids and carbon nanomaterials interacting among themselves, we adopted existing models from the literature. We studied the imidazolium ionic liquids [C4C1im][SCN], [C4C1im][N(CN)2], [C4C1im][C(CN)3] and [C4C1im][(CF3SO2)2N]. Attraction is stronger for cations (than for anions) above and below the π-system of the nanomaterials, whereas anions show stronger attraction for the hydrogenated edges. The ordering of ions around and inside (7,7) and (10,10) single-walled nanotubes, and near a stack of graphene sheets, was analysed in terms of density distribution functions. We verified that anions are found, as well as cations, in the first interfacial layer interacting with the materials, which is surprising given the interaction potential surfaces. The thermal conductivity of the ionic liquids and of composite systems containing one nanotube or one graphene stack in suspension was calculated using non-equilibrium molecular dynamics. Thermal conductivity was calculated along the axis of the nanotube and across the planes of graphene, in order to see the anisotropy. In the composite systems containing the nanotube, there is an enhancement of the overall thermal conductivity, with calculated values comparing well with experiments on nanotube suspensions, namely in terms of the order of the different ionic liquids. In the systems containing the graphene stack, the interfacial region of the ionic liquid near the surface of the material has an enhanced thermal conductivity with respect to the bulk liquid, but no significant discontinuity in the temperature profiles were observed. This is important information for models of thermal conduction in nanofluids.

4.
Dalton Trans ; 45(35): 13957-68, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27529408

ABSTRACT

The syntheses, crystal structures and catalytic activities of the polymers derived from 2-(2-pyridylmethyleneamino)benzenesulfonic acid (HL), viz. [CuL(H2tma)]n (1) and [{Cu2L2(H2pma)}·(8H2O)]n (2) [H3tma = benzene-1,3,5-tricarboxylic (trimesic) acid and H4pma = benzene-1,2,4,5-tetracarboxylic (pyromellitic) acid], are presented. Despite the comparable combinations and compositions of ligands (sulfonate and carboxylate) in these two polymers the bridging moiety in 1 is sulfonate while in 2 it is carboxylate. Complexes 1 and 2 act as catalysts in the peroxidative oxidation of cyclohexane under mild conditions using either the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] or acetonitrile as the solvent. The ionic liquid medium leads to increases in the yields and in the turnover numbers, achieved in shorter reaction times in comparison with those when using the conventional acetonitrile solvent. A simple recycling of the catalysts in the ionic liquid medium is achieved without loss of activity and selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...