Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 6(7): 190598, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31417757

ABSTRACT

The vaquita (Phocoena sinus) is a small porpoise endemic to Mexico. It is listed by IUCN as Critically Endangered because of unsustainable levels of bycatch in gillnets. The population has been monitored with passive acoustic detectors every summer from 2011 to 2018; here we report results for 2017 and 2018. We combine the acoustic trends with an independent estimate of population size from 2015, and visual observations of at least seven animals in 2017 and six in 2018. Despite adoption of an emergency gillnet ban in May 2015, the estimated rate of decline remains extremely high: 48% decline in 2017 (95% Bayesian credible interval (CRI) 78% decline to 9% increase) and 47% in 2018 (95% CRI 80% decline to 13% increase). Estimated total population decline since 2011 is 98.6%, with greater than 99% probability the decline is greater than 33% yr-1. We estimate fewer than 19 vaquitas remained as of summer 2018 (posterior mean 9, median 8, 95% CRI 6-19). From March 2016 to March 2019, 10 dead vaquitas killed in gillnets were found. The ongoing presence of illegal gillnets despite the emergency ban continues to drive the vaquita towards extinction. Immediate management action is required if the species is to be saved.

3.
J Acoust Soc Am ; 142(5): EL512, 2017 11.
Article in English | MEDLINE | ID: mdl-29195434

ABSTRACT

The vaquita is a critically endangered species of porpoise. It produces echolocation clicks, making it a good candidate for passive acoustic monitoring. A systematic grid of sensors has been deployed for 3 months annually since 2011; results from 2016 are reported here. Statistical models (to compensate for non-uniform data loss) show an overall decline in the acoustic detection rate between 2015 and 2016 of 49% (95% credible interval 82% decline to 8% increase), and total decline between 2011 and 2016 of over 90%. Assuming the acoustic detection rate is proportional to population size, approximately 30 vaquita (95% credible interval 8-96) remained in November 2016.


Subject(s)
Acoustics , Echolocation , Endangered Species , Environmental Monitoring/methods , Porpoises/psychology , Vocalization, Animal , Acoustics/instrumentation , Animals , Echolocation/classification , Environmental Monitoring/instrumentation , Population Density , Porpoises/classification , Signal Processing, Computer-Assisted , Time Factors , Transducers , Vocalization, Animal/classification
4.
Conserv Biol ; 31(1): 183-191, 2017 02.
Article in English | MEDLINE | ID: mdl-27338145

ABSTRACT

The vaquita (Phocoena sinus) is the world's most endangered marine mammal with approximately 245 individuals remaining in 2008. This species of porpoise is endemic to the northern Gulf of California, Mexico, and historically the population has declined because of unsustainable bycatch in gillnets. An illegal gillnet fishery for an endangered fish, the totoaba (Totoaba macdonaldi), has recently resurged throughout the vaquita's range. The secretive but lucrative wildlife trade with China for totoaba swim bladders has probably increased vaquita bycatch mortality by an unknown amount. Precise population monitoring by visual surveys is difficult because vaquitas are inherently hard to see and have now become so rare that sighting rates are very low. However, their echolocation clicks can be identified readily on specialized acoustic detectors. Acoustic detections on an array of 46 moored detectors indicated vaquita acoustic activity declined by 80% between 2011 and 2015 in the central part of the species' range. Statistical models estimated an annual rate of decline of 34% (95% Bayesian credible interval -48% to -21%). Based on results from 2011 to 2014, the government of Mexico enacted and is enforcing an emergency 2-year ban on gillnets throughout the species' range to prevent extinction, at a cost of US$74 million to compensate fishers. Developing precise acoustic monitoring methods proved critical to exposing the severity of vaquitas' decline and emphasizes the need for continual monitoring to effectively manage critically endangered species.


Subject(s)
Conservation of Natural Resources , Echolocation , Endangered Species , Porpoises , Acoustics , Animals , Bayes Theorem , Humans , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...