Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Lett ; 15(7): 20190084, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31266421

ABSTRACT

In insects, odours are coded by the combinatorial activation of ascending pathways, including their third-order representation in mushroom body Kenyon cells. Kenyon cells also receive intersecting input from ascending and mostly dopaminergic reinforcement pathways. Indeed, in Drosophila, presenting an odour together with activation of the dopaminergic mushroom body input neuron PPL1-01 leads to a weakening of the synapse between Kenyon cells and the approach-promoting mushroom body output neuron MBON-11. As a result of such weakened approach tendencies, flies avoid the shock-predicting odour in a subsequent choice test. Thus, increased activity in PPL1-01 stands for punishment, whereas reduced activity in MBON-11 stands for predicted punishment. Given that punishment-predictors can themselves serve as punishments of second order, we tested whether presenting an odour together with the optogenetic silencing of MBON-11 would lead to learned odour avoidance, and found this to be the case. In turn, the optogenetic activation of MBON-11 together with odour presentation led to learned odour approach. Thus, manipulating activity in MBON-11 can be an analogue of predicted, second-order reinforcement.


Subject(s)
Drosophila , Optogenetics , Animals , Drosophila melanogaster , Learning , Mushroom Bodies , Odorants
2.
Learn Mem ; 25(6): 247-257, 2018 06.
Article in English | MEDLINE | ID: mdl-29764970

ABSTRACT

Painful events establish opponent memories: cues that precede pain are remembered negatively, whereas cues that follow pain, thus coinciding with relief are recalled positively. How do individual reinforcement-signaling neurons contribute to this "timing-dependent valence-reversal?" We addressed this question using an optogenetic approach in the fruit fly. Two types of fly dopaminergic neuron, each comprising just one paired cell, indeed established learned avoidance of odors that preceded their photostimulation during training, and learned approach to odors that followed the photostimulation. This is in striking parallel to punishment versus relief memories reinforced by a real noxious event. For only one of these neuron types, both effects were strong enough for further analyses. Notably, interfering with dopamine biosynthesis in these neurons partially impaired the punishing effect, but not the relieving after-effect of their photostimulation. We discuss how this finding constraints existing computational models of punishment versus relief memories and introduce a new model, which also incorporates findings from mammals. Furthermore, whether using dopaminergic neuron photostimulation or a real noxious event, more prolonged punishment led to stronger relief. This parametric feature of relief may also apply to other animals and may explain particular aspects of related behavioral dysfunction in humans.


Subject(s)
Dopaminergic Neurons/metabolism , Pain/metabolism , Punishment , Animals , Animals, Genetically Modified , Brain/metabolism , Dopamine/metabolism , Drosophila melanogaster , Memory/physiology , Optogenetics , Pain/pathology , Pain Perception/physiology
3.
J Exp Biol ; 220(Pt 13): 2452-2475, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28679796

ABSTRACT

Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva - because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour-taste associative learning, as well as light/dark-electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.


Subject(s)
Behavior, Animal , Drosophila melanogaster/physiology , Animals , Brain/cytology , Brain/physiology , Drosophila melanogaster/growth & development , Larva/growth & development , Larva/physiology
4.
J Neurosci ; 35(19): 7487-502, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25972175

ABSTRACT

Adverse life events can induce two kinds of memory with opposite valence, dependent on timing: "negative" memories for stimuli preceding them and "positive" memories for stimuli experienced at the moment of "relief." Such punishment memory and relief memory are found in insects, rats, and man. For example, fruit flies (Drosophila melanogaster) avoid an odor after odor-shock training ("forward conditioning" of the odor), whereas after shock-odor training ("backward conditioning" of the odor) they approach it. Do these timing-dependent associative processes share molecular determinants? We focus on the role of Synapsin, a conserved presynaptic phosphoprotein regulating the balance between the reserve pool and the readily releasable pool of synaptic vesicles. We find that a lack of Synapsin leaves task-relevant sensory and motor faculties unaffected. In contrast, both punishment memory and relief memory scores are reduced. These defects reflect a true lessening of associative memory strength, as distortions in nonassociative processing (e.g., susceptibility to handling, adaptation, habituation, sensitization), discrimination ability, and changes in the time course of coincidence detection can be ruled out as alternative explanations. Reductions in punishment- and relief-memory strength are also observed upon an RNAi-mediated knock-down of Synapsin, and are rescued both by acutely restoring Synapsin and by locally restoring it in the mushroom bodies of mutant flies. Thus, both punishment memory and relief memory require the Synapsin protein and in this sense share genetic and molecular determinants. We note that corresponding molecular commonalities between punishment memory and relief memory in humans would constrain pharmacological attempts to selectively interfere with excessive associative punishment memories, e.g., after traumatic experiences.


Subject(s)
Association Learning/physiology , Avoidance Learning/physiology , Brain/metabolism , Memory/physiology , Punishment , Synapsins/physiology , Age Factors , Animals , Animals, Genetically Modified , Brain/cytology , Brain/physiology , Discrimination, Psychological , Drosophila Proteins/genetics , Drosophila melanogaster , Electroshock/adverse effects , Female , Male , Mutation/genetics , Odorants , Phosphorylation , RNA Interference/physiology , Synapsins/genetics
5.
Biol Open ; 3(7): 575-82, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24907371

ABSTRACT

Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila.

6.
Biol Lett ; 9(4): 20121171, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23658002

ABSTRACT

Painful events shape future behaviour in two ways: stimuli associated with pain onset subsequently support learned avoidance (i.e. punishment-learning) because they signal future, upcoming pain. Stimuli associated with pain offset in turn signal relief and later on support learned approach (i.e. relief-learning). The relative strengths of such punishment- and relief-learning can be crucial for the adaptive organization of behaviour in the aftermath of painful events. Using Drosophila, we compare punishment- and relief-memories in terms of their temporal decay and sensitivity to retrograde amnesia. During the first 75 min following training, relief-memory is stable, whereas punishment-memory decays to half of the initial score. By 24 h after training, however, relief-memory is lost, whereas a third of punishment-memory scores still remain. In accordance with such rapid temporal decay from 75 min on, retrograde amnesia erases relief-memory but leaves a half of punishment-memory scores intact. These findings suggest differential mechanistic bases for punishment- and relief-memory, thus offering possibilities for separately interfering with either of them.


Subject(s)
Drosophila melanogaster/physiology , Memory , Models, Animal , Animals , Humans , Learning , Punishment , Time Factors
7.
PLoS One ; 6(9): e24300, 2011.
Article in English | MEDLINE | ID: mdl-21931676

ABSTRACT

How do physico-chemical stimulus features, perception, and physiology relate? Given the multi-layered and parallel architecture of brains, the question specifically is where physiological activity patterns correspond to stimulus features and/or perception. Perceived distances between six odour pairs are defined behaviourally from four independent odour recognition tasks. We find that, in register with the physico-chemical distances of these odours, perceived distances for 3-octanol and n-amylacetate are consistently smallest in all four tasks, while the other five odour pairs are about equally distinct. Optical imaging in the antennal lobe, using a calcium sensor transgenically expressed in only first-order sensory or only second-order olfactory projection neurons, reveals that 3-octanol and n-amylacetate are distinctly represented in sensory neurons, but appear merged in projection neurons. These results may suggest that within-antennal lobe processing funnels sensory signals into behaviourally meaningful categories, in register with the physico-chemical relatedness of the odours.


Subject(s)
Arthropod Antennae/physiology , Drosophila melanogaster/physiology , Imaging, Three-Dimensional/methods , Odorants/analysis , Perception/physiology , Animals , Behavior, Animal/physiology , Mutation/genetics , Olfactory Receptor Neurons/physiology
8.
Chem Senses ; 33(8): 685-92, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18640967

ABSTRACT

Sodium and chloride need to be ingested and cannot be stored. Therefore, choice of habitat and diet as related to NaCl needs to be tightly regulated. We thus expect that the behavioral effects of salt are organized according to its concentration. Here, we comparatively "fingerprint" the reflex releasing (in choice and feeding experiments) versus the reinforcing effects of sodium chloride ("salt") in terms of their concentration dependencies, using larval Drosophila. Qualitatively, we find that the behavioral effects of salt in all 3 assays are similar: choice, feeding, and reinforcing effect all change from appetitive to aversive as concentration is increased. Quantitatively, however, the appetitive effects for choice and feeding share their optimum at around 0.02 M, whereas the dose-response curve for the reinforcing effect is shifted by more than one order of magnitude toward higher concentrations. Interestingly, a similar shift between these 2 kinds of behavioral effect is also found for sugars (Schipanski et al. 2008). Thus, for salt and for sugar, the sensory-to-motor system is more sensitive regarding immediate, reflexive behavior than regarding reinforcement. We speculate that this may partially be due to a dissociation of the sensory pathways signaling toward either reflexive behavior or internal reinforcement.


Subject(s)
Appetitive Behavior/drug effects , Drosophila melanogaster/drug effects , Food Preferences/drug effects , Learning/drug effects , Sodium Chloride/pharmacology , Animal Feed , Animals , Dose-Response Relationship, Drug , Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Larva/drug effects , Larva/physiology
9.
Chem Senses ; 33(6): 563-73, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18511478

ABSTRACT

Gustatory stimuli have at least 2 kinds of function: They can support immediate, reflexive responses (such as substrate choice and feeding) and they can drive internal reinforcement. We provide behavioral analyses of these functions with respect to sweet taste in larval Drosophila. The idea is to use the dose-effect characteristics as behavioral "fingerprints" to dissociate reflexive and reinforcing functions. For glucose and trehalose, we uncover relatively weak preference. In contrast, for fructose and sucrose, preference responses are strong and the effects on feeding pronounced. Specifically, larvae are attracted to, and feeding is stimulated most strongly for, intermediate concentrations of either sugar: Using very high concentrations (4 M) results in weakened preference and suppression of feeding. In contrast to such an optimum function regarding choice and feeding, an asymptotic dose-effect function is found for reinforcement learning: Learning scores reach asymptote at 2 M and remain stable for a 4-M concentration. A similar parametric discrepancy between the reflexive (choice and feeding) and reinforcing function is also seen for sodium chloride (Niewalda T, Singhal S, Fiala A, Saumweber T, Wegener S, Gerber B, in preparation). We discuss whether these discrepancies are based either on inhibition from high-osmolarity sensors upon specifically the reflexive pathways or whether different sensory pathways, with different effective dose-response characteristics, may have preferential access to drive either reflex responses or modulatory neurons mediating internal reinforcement, respectively.


Subject(s)
Carbohydrate Metabolism , Choice Behavior/physiology , Drosophila melanogaster/physiology , Feeding Behavior/physiology , Learning/physiology , Animal Feed , Animals , Carbohydrates/analysis , Drosophila melanogaster/growth & development , Larva/physiology , Taste Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...