Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 264(3): 304-310, 2016 12.
Article in English | MEDLINE | ID: mdl-27513447

ABSTRACT

The mechanism of the increase in ductility in bulk metallic glass matrix composites over monolithic bulk metallic glasses is to date little understood, primarily because the interplay between dislocations in the crystalline phase and shear bands in the glass could neither be imaged nor modelled in a validated way. To overcome this roadblock, we show that shear bands can be imaged in three dimensions by atom probe tomography from density variations in the reconstructed atomic density, which density-functional theory suggests being a local-work function effect. Imaging of near-interface shear bands in Ti48 Zr20 V12 Cu5 Be15 bulk metallic glass matrix composite permits measurement of their composition, thickness, branching and interactions with the dendrite interface. These results confirm that shear bands here nucleate from stress concentrations in the glass due to intense, localized plastic deformation in the dendrites rather than intrinsic structural inhomogeneities.

2.
J Microsc ; 260(1): 73-85, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26138919

ABSTRACT

The effects of using a traction-free (plane-stress) assumption to obtain the full distortion tensor from high-resolution EBSD measurements are analyzed. Equations are derived which bound the traction-free error arising from angular misorientation of the sample surface; the error in recovered distortion is shown to be quadratic with respect to that misorientation, and the maximum 'safe' angular misorientation is shown to be 2.7 degrees. The effects of localized stress fields on the traction-free assumption are then examined by a numerical case study, which uses the Boussinesq formalism to model stress fields near a free surface. Except in cases where localized stress field sources occur very close to sample points, the traction-free assumption appears to be admirably robust.

SELECTION OF CITATIONS
SEARCH DETAIL
...