Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Rep ; 12(1): 6334, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428845

ABSTRACT

In recent years, deep learning techniques have shown impressive performance in the field of identification of diseases of crops using digital images. In this work, a deep learning approach for identification of in-field diseased images of maize crop has been proposed. The images were captured from experimental fields of ICAR-IIMR, Ludhiana, India, targeted to three important diseases viz. Maydis Leaf Blight, Turcicum Leaf Blight and Banded Leaf and Sheath Blight in a non-destructive manner with varied backgrounds using digital cameras and smartphones. In order to solve the problem of class imbalance, artificial images were generated by rotation enhancement and brightness enhancement methods. In this study, three different architectures based on the framework of 'Inception-v3' network were trained with the collected diseased images of maize using baseline training approach. The best-performed model achieved an overall classification accuracy of 95.99% with average recall of 95.96% on the separate test dataset. Furthermore, we compared the performance of the best-performing model with some pre-trained state-of-the-art models and presented the comparative results in this manuscript. The results reported that best-performing model performed quite better than the pre-trained models. This demonstrates the applicability of baseline training approach of the proposed model for better feature extraction and learning. Overall performance analysis suggested that the best-performed model is efficient in recognizing diseases of maize from in-field images even with varied backgrounds.


Subject(s)
Deep Learning , Crops, Agricultural , India , Zea mays
2.
Front Plant Sci ; 13: 1077568, 2022.
Article in English | MEDLINE | ID: mdl-36643296

ABSTRACT

Maydis leaf blight (MLB) of maize (Zea Mays L.), a serious fungal disease, is capable of causing up to 70% damage to the crop under severe conditions. Severity of diseases is considered as one of the important factors for proper crop management and overall crop yield. Therefore, it is quite essential to identify the disease at the earliest possible stage to overcome the yield loss. In this study, we created an image database of maize crop, MDSD (Maydis leaf blight Disease Severity Dataset), containing 1,760 digital images of MLB disease, collected from different agricultural fields and categorized into four groups viz. healthy, low, medium and high severity stages. Next, we proposed a lightweight convolutional neural network (CNN) to identify the severity stages of MLB disease. The proposed network is a simple CNN framework augmented with two modified Inception modules, making it a lightweight and efficient multi-scale feature extractor. The proposed network reported approx. 99.13% classification accuracy with the f1-score of 98.97% on the test images of MDSD. Furthermore, the class-wise accuracy levels were 100% for healthy samples, 98% for low severity samples and 99% for the medium and high severity samples. In addition to that, our network significantly outperforms the popular pretrained models, viz. VGG16, VGG19, InceptionV3, ResNet50, Xception, MobileNetV2, DenseNet121 and NASNetMobile for the MDSD image database. The experimental findings revealed that our proposed lightweight network is excellent in identifying the images of severity stages of MLB disease despite complicated background conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...