Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9568, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671168

ABSTRACT

In recent years, there has been an increasing interest in the green synthesis of metallic nanoparticles, mostly because of the evident limitations associated with chemical and physical methods. Green synthesis, commonly referred to as "biogenic synthesis," is seen as an alternative approach to produce AgNPs (silver nanoparticles). The current work focuses on the use of Asterarcys sp. (microalga) for biological reduction of AgNO3 to produce AgNPs. The optimal parameters for the reduction of AgNPs were determined as molarity of 3 mM for AgNO3 and an incubation duration of 24 h at pH 9, using a 20:80 ratio of algal extract to AgNO3. The biosynthesized Ast-AgNPs were characterised using ultraviolet-visible spectroscopy (UV-Vis), zeta potential, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) patterns. The nanoparticles exhibited their highest absorption in the UV-visible spectra at 425 nm. The X-ray diffraction (XRD) investigation indicated the presence of characteristic peaks at certain angles: 38.30° (1 1 1), 44.40° (2 0 0), 64.64° (2 2 0), and 77.59° (3 1 1) according to the JCPDS file No. 04-0783. Based on SEM and TEM, the Ast-AgNPs had an average size of 35 nm and 52 nm, respectively. The zeta potential was determined to be - 20.8 mV, indicating their stability. The highest antibacterial effectiveness is shown against Staphylococcus aureus, with a zone of inhibition of 25.66 ± 1.52 mm at 250 µL/mL conc. of Ast-AgNPs. Likewise, Ast-AgNPs significantly suppressed the growth of Fusarium sp. and Curvularia sp. by 78.22% and 85.05%, respectively, at 150 µL/mL conc. of Ast-AgNPs. In addition, the Ast-AgNPs exhibited significant photocatalytic activity in degrading methylene blue (MB), achieving an 88.59% degradation in 120 min, revealing multiple downstream applications of Ast-AgNPs.


Subject(s)
Green Chemistry Technology , Metal Nanoparticles , Silver , Silver/chemistry , Metal Nanoparticles/chemistry , Green Chemistry Technology/methods , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Microalgae/chemistry , Microbial Sensitivity Tests , X-Ray Diffraction , Staphylococcus aureus/drug effects
2.
Environ Sci Pollut Res Int ; 30(19): 55742-55755, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36905545

ABSTRACT

The extensive usage of iron oxide nanoparticles (FeO NPs) in commercial and biomedical applications raises the risk of releasing their remains into the aquatic ecosystems and this could possibly cause cytotoxic effects on aquatic organisms. Thus, the toxicity assessment of FeO NPs on cyanobacteria, which are primary producers at the bottom of food chain in aquatic ecosystems, is essential to gain information about the potential ecotoxicological threat on aquatic biota. The present study investigated the cytotoxic effects of FeO NPs on Nostoc ellipsosporum using different concentrations (0, 10, 25, 50 and 100 mg L-1) to track the time-dependent and dose-dependent effects and compared with its bulk equivalent. In addition, the impacts of FeO NPs and bulk counterpart on cyanobacterial cells were assessed under nitrogen as well as nitrogen-deficient conditions, because of ecological role of cyanobacteria in nitrogen fixation. The study revealed that the highest protein content was observed in the control in both types of BG-11 media compared to treatments of nano and bulk particles of Fe2O3. A 23% reduction in protein in nanoparticle treatment and a 14% reduction in bulk treatment at 100 mg L-1 was observed in BG-11 medium. At same concentration, in BG-110 media, this decline was even more intense with 54% reduction in nanoparticle and a 26% reduction in bulk. Catalytic activity of catalase and superoxide dismutase was found to be linearly correlated with the dose concentration for nano and bulk form in BG-11 as well as BG-110 media. The increased levels of lactate dehydrogenase act as biomarker of the cytotoxicity brought on by nanoparticles. Optical, scanning electron, and transmission electron microscopy all demonstrated the cell entrapment, nanoparticle deposition on the cell surface, cell wall collapse and membrane degradation. A cause for concern is that nanoform was found to be more hazardous than bulk form.


Subject(s)
Metal Nanoparticles , Nanoparticles , Nostoc , Ecosystem , Nanoparticles/toxicity , Proteins , Fresh Water , Nitrogen , Magnetic Iron Oxide Nanoparticles
3.
Bioresour Technol ; 371: 128617, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36640815

ABSTRACT

The aim of this work was to assess the efficiency of freshwater green microalga, Chlorella sorokiniana for diclofenac sodium (DFS) removal, and metabolic response of alga to comprehend the metabolic pathways involved/affected during DFS decontamination. Results showed 91.51 % removal of DFS could be achieved within 9 days of algal treatment along with recovery of enhanced value-added bioresources i.e. chlorophyll, carotenoids, and lipids from the spent biomass. DFS also had an effect on enzyme activity including superoxide dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Furthermore, metabolomics profiling provided an in-depth insight into changes in the metabolic response of C. sorokiniana wherein DFS induced 32 metabolites in microalgae compared to unexposed-control. This study offers microalgae as a green option for DFS removal, and the metabolomics study complemented with DFS could be an approach to understand the stress-induced strategies of C. sorokiniana for concomitant value-added products recovery in presence of DFS.


Subject(s)
Chlorella , Microalgae , Microalgae/metabolism , Chlorella/metabolism , Diclofenac/metabolism , Water/metabolism , Lipids , Metabolomics , Biomass
4.
Environ Res ; 215(Pt 1): 114219, 2022 12.
Article in English | MEDLINE | ID: mdl-36057333

ABSTRACT

With the rapid emergence of various metabolic and multiple-drug-resistant infectious diseases, new pharmaceuticals are continuously being introduced in the market. The excess production and use of pharmaceuticals and their untreated/unmetabolized release in the environment cause the contamination of aquatic ecosystem, and thus, compromise the environment and human-health. The present review provides insights into the classification, sources, occurrence, harmful impacts, and existing technologies to curb these problems. A comprehensive detail of various biological and nanotechnological strategies for the removal of pharmaceutical residues from water is critically discussed focusing on their efficiencies, and current limitations to design improved-technologies for their lab-to-field applications. Furthermore, the review highlights and suggests the scope of integrated bionanotechnological methods for enhanced removal of pharmaceutical residues from water to fulfill the United Nations Sustainable Development Goal (UN-SDG) for providing clean potable water for all.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Ecosystem , Humans , Pharmaceutical Preparations , Wastewater , Water Pollutants, Chemical/analysis , Water Purification/methods
5.
Mar Pollut Bull ; 182: 113971, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35905700

ABSTRACT

Oil spill causes extreme environmental damage, from aquatic life to seabirds, disrupting the entire ecosystem. Herein, we have synthesized high scale, economical and bio-compatible, green algae mediated Titanium oxide (TiO2) nanoparticles and Polyacrylonitrile (PAN) nanofiber mats. We have studied the effect of encapsulation and coating of TiO2 nanoparticles over nanofiber mats for highly efficient oil spill adsorption. TiO2 encapsulated and coated PAN (TECP) nanofibers showed a maximum of 62.34 g g-1 adsorption capacity of petroleum oil from the water surface. Moreover, the composite mats show maximum adsorption within 45 s for up to 5 repeated cycles. Further, it has been observed that the adsorption capacity has increased by increasing the weight of the composite nanofiber mats, which confirms its commercial applicability. Thus, this work provides rapid, large-scale, economical, bio-compatible, and highly effective adsorbents for oil spill cleaning and extraction over natural waterbodies.


Subject(s)
Chlorophyta , Nanofibers , Nanoparticles , Petroleum Pollution , Acrylic Resins , Adsorption , Ecosystem , Titanium
6.
Bioresour Technol ; 344(Pt B): 126303, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34752885

ABSTRACT

This study reports the effects of polar (acetone/methanol) and non-polar (chloroform/hexane) solvents on lipid yield, fatty acids methyl esters (FAMEs) composition, and biodiesel properties of microalgae. The lipids yield extracted by hexane and chloroform (100.01 and 94.33 mg/g) were higher than by methanol and acetone (40.12 and 86.91 mg/g). The polarity of solvents also affected FAMEs composition of microalgal lipids. Total saturated fatty acids and unsaturated fatty acids of extracted lipids were 61.53% and 38.47% by chloroform and 38.85% and 61.15% by methanol. Moreover, polar and non-polar solvents affected the biodiesel properties such as cetane number and oxidative stability. In addition, higher ratio of chloroform to methanol and higher temperature increased the lipid yield and saturation degree of lipids, through ultrasound-assisted lipid extraction method. Overall, the results revealed that the lipids yield, FAMEs composition, and biodiesel quality of microalgal biomass can be significantly affected by solvents polarity and extraction conditions.


Subject(s)
Microalgae , Biofuels , Biomass , Esterification , Fatty Acids , Lipids , Solvents
7.
Environ Sci Pollut Res Int ; 27(25): 32076-32087, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32506402

ABSTRACT

An ecofriendly and solar light-responsive graphene oxide wrapped zinc oxide nanohybrid has been synthesized hydrothermally using lemon and honey respectively as chelating and complexing agents. By tuning the reaction conditions, a heterostructure between GO and ZnO has been formed during synthesis. The photocatalytic activity of the synthesized nanohybrid was investigated by degradation of hazardous organic textile dye (methylene blue) as well as wastewater under natural solar light. The nanohybrid exhibited excellent photocatalytic activity towards degradation (~ 89%) of methylene blue (MeB). Furthermore, along with decolorization, 71% of mineralization was also achieved. Interestingly, the nanohybrid has been found to be reusable up to 4 cycles without significant loss of photocatalytic activity. Along with this, the physicochemical parameters of the wastewater generated from textile industry have been also monitored before and after exposure to nanohybrid. The results revealed significant reduction in chemical oxygen demand (COD) (96.33%), biochemical oxygen demand (BOD) (96.23%), and total dissolved solids (TDS) (20.85%), suggesting its potential applicability in textile wastewater treatment.


Subject(s)
Nanocomposites , Zinc Oxide , Catalysis , Sunlight , Textiles
8.
Bioresour Technol ; 304: 122993, 2020 May.
Article in English | MEDLINE | ID: mdl-32078900

ABSTRACT

Green microalga, Chlamydomonas sp. TRC-1 (C. TRC-1), isolated from the outlet of effluent treatment plant of textile dyeing mill, was investigated for its competence towards bioremediation. Algal biomass obtained after remediation (ABAR) was implied for bioelectricity and biofuel production. C. TRC-1 could completely decolorize the effluent in 7 days. Significant reduction in pollution-indicating parameters was observed. Chronoamperometric studies were carried out using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). Maximum current density, power and power density of 3.6 A m-2, 4.13 × 10-4 W and 1.83 W m-2, respectively were generated in ABAR. EIS studies showed a decrease in resistance of ABAR, supporting better electron transfer as compared to algal biomass before remediation (ABBR). Its candidature for biofuel production was assessed by estimating the total lipid content. Results revealed enhancement in lipid content from 46.85% (ABBR) to 79.1% (ABAR). Current study advocates versatile potential of isolated C. TRC-1 for bioremediation of wastewater, bioelectricity production and biofuel generation.


Subject(s)
Chlamydomonas , Microalgae , Biofuels , Biomass , Lipids , Wastewater
9.
J Hazard Mater ; 306: 386-394, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26826964

ABSTRACT

The genotoxic and carcinogenic effects of diazo dyes from industrial effluents pose a serious environmental threat by contaminating aquatic ecosystem and consequently impact human health. The potential of a diazo dye resistant, self-sustainable photosynthetic green alga Chlorella pyrenoidosa NCIM 2738 provides a viable green technology for an efficient biodegradation of diazo dye Direct Red-31 (DR-31) and overall improvement of water quality. Herein, we for the first time report the degradation of DR-31 using C. pyrenoidosa. Batch experiments were performed to optimize the effect of initial pH, contact time and toxicity-range of DR-31 in order to achieve the optimal conditions for maximum decolourization in continuous cyclic photobioreactor. In batch culture, C. pyrenoidosa exhibited 96% decolourization with 40mgL(-1) dye at pH3. The equilibrium was attained within 30min and the maximum uptake of 30.53mgg(-1) algal biomass was observed during this period. This was found to be fitted well with Langmuir and Freundlich adsorption isotherm. The FT-IR spectra showed a change from -N=N- to N-H suggesting the possible involvement of the azoreductase enzyme. The application of C. pyrenoidosa not only degraded the DR-31 but also improved the quality of water by reducing COD (82.73%), BOD (56.44%), sulphate (54.54%), phosphate (19.88%), and TDS (84.18%) which was further enhanced in continuous cyclic bioreactor treatment. The results clearly showed that C. pyrenoidosa provides an efficient, self-sustainable green technology for decolourization of DR-31 and improved the water quality.


Subject(s)
Azo Compounds/metabolism , Chlorella/metabolism , Coloring Agents/metabolism , Water Pollutants, Chemical/metabolism , Biological Oxygen Demand Analysis , Chlorella/growth & development , Industrial Waste , Light , Phosphates/analysis , Photobioreactors , Sulfates/analysis , Waste Disposal, Fluid , Water Purification , Water Quality
10.
Curr Microbiol ; 56(5): 429-35, 2008 May.
Article in English | MEDLINE | ID: mdl-18322734

ABSTRACT

Salt tolerance, a multigenic trait, necessitates knowledge about biosynthesis and function of candidate gene(s) at the cellular level. Among the osmolytes, trehalose biosynthesis in cyanobacteria facing NaCl stress is little understood. Anabaena 7120 filaments exposed to 150 mM: NaCl fragmented and recovered on transfer to -NaCl medium with the increased heterocysts frequency (7%) over the control (4%). Cells failed to retain Na+ beyond a threshold [2.19 mM/cm3 (PCV)]. Whereas NaCl-stressed cells exhibited a marginal rise in K+ (1.1-fold) only at 30 h, for Na+ it was 130-fold at 48 h over cells in control. A time-course study (0-54 h) revealed reduction in intracellular Na+ beyond 48 h [0.80 mM/cm3 (PCV)] suggestive of ion efflux. The NaCl-stressed cells showed differential expression of maltooligosyltrehalose synthase (MTSase; EC 5.4.99.15) and maltooligosyltrehalose trehalohydrolase (MTHase; EC 3.2.1.141) depending on the time and the extent of intracellular Na+ buildup.


Subject(s)
Anabaena/enzymology , Chlorates/metabolism , Glucosidases/metabolism , Glucosyltransferases/metabolism , Potassium/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Trehalose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...