Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ESMO Open ; 7(5): 100587, 2022 10.
Article in English | MEDLINE | ID: mdl-36156449

ABSTRACT

BACKGROUND: Patients with cancer are at high risk for severe coronavirus disease 2019 (COVID-19) infection. Knowledge regarding the efficacy of the messenger RNA (mRNA) vaccines in actively treated cancer patients is limited as they had been excluded from the pivotal studies of these vaccines. We evaluated humoral and cellular immune responses in cancer patients after double vaccination and a booster dose and identified disease- and treatment-related factors associated with a reduced immune response. We also documented the number and outcome of breakthrough infections. PATIENTS AND METHODS: Patients with metastatic solid malignancies undergoing active treatment were included if they had received two doses of the severe acute respiratory syndrome coronavirus 2 mRNA vaccines BNT162b2 or mRNA-1273 and a booster dose. Other causes of immunosuppression and previous COVID-19 infections (positive anti-nucleocapsid titers) were exclusion criteria. Anti-spike antibodies, neutralizing antibodies (nAbs) and T-cell responses were assessed about 6 months after the two-dose vaccination and 4 weeks after the booster. RESULTS: Fifty-one patients had pre-booster and 46 post-booster measurements. Anti-spike titers after two vaccine doses were highly variable and significantly lower in older patients, during treatment with chemotherapy compared to targeted and endocrine treatments and in patients with low CD4+ or CD19+ cell counts. The booster dose led to a significant increase in anti-spike antibodies and nAbs, achieving almost uniformly high titers, irrespective of baseline and treatment factors. The cellular immune response was also significantly increased by the booster, however generally more stable and not influenced by baseline factors and treatment type. Seventeen patients (33%) experienced breakthrough infections, but none required hospital care or died from COVID-19. CONCLUSIONS: An mRNA vaccine booster dose is able to increase humoral and cellular immune responses and to overcome the immunosuppressive influence of baseline and treatment factors in cancer patients. Breakthrough infections were uniformly mild in this vaccinated high-risk population.


Subject(s)
COVID-19 , Neoplasms , Humans , Aged , Immunization, Secondary , COVID-19/prevention & control , RNA, Messenger , BNT162 Vaccine , Vaccination , Antibodies, Neutralizing , Neoplasms/drug therapy , mRNA Vaccines
2.
Int J Sports Med ; 36(7): 585-91, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25760148

ABSTRACT

The purpose of this study was to compare lower limb muscle activity between physically active and inactive individuals during whole-body vibration exercises. Additionally, transmissibility of the vertical acceleration to the head was quantified. 30 active and 28 inactive participants volunteered to stand in a relaxed (20°) and a squat (60°) position on a side-alternating WBV platform that induced vibrations at 16 Hz and 4 mm amplitude. Surface electromyography (sEMG) was measured in selected lower limb muscles and was normalized to the corresponding sEMG recorded during a maximal voluntary contraction. The vertical acceleration on the head was evaluated and divided by the vertical platform acceleration to obtain transmissibility values. Control trials without vibration were also assessed. The outcomes of this study showed that (1) WBV significantly increased muscle activity in the active (absolute increase: +7%, P <0.05) and inactive participants (+8%, P <0.05), (2) with no differences in sEMG increases between the groups (P>0.05). However, (3), transmissibility to the head was greater in the active (0.080) than the inactive participants (0.065, P <0.05). In conclusion, inactive individuals show similar responses in sEMG due to WBV as their active counterparts, but are at lower risk for potential side-effects of vibration exposure.


Subject(s)
Exercise/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Vibration , Acceleration , Adolescent , Adult , Electromyography , Female , Humans , Lower Extremity/physiology , Male , Young Adult
3.
Nature ; 482(7385): 382-5, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22297844

ABSTRACT

Quantum computers could be used to solve certain problems exponentially faster than classical computers, but are challenging to build because of their increased susceptibility to errors. However, it is possible to detect and correct errors without destroying coherence, by using quantum error correcting codes. The simplest of these are three-quantum-bit (three-qubit) codes, which map a one-qubit state to an entangled three-qubit state; they can correct any single phase-flip or bit-flip error on one of the three qubits, depending on the code used. Here we demonstrate such phase- and bit-flip error correcting codes in a superconducting circuit. We encode a quantum state, induce errors on the qubits and decode the error syndrome--a quantum state indicating which error has occurred--by reversing the encoding process. This syndrome is then used as the input to a three-qubit gate that corrects the primary qubit if it was flipped. As the code can recover from a single error on any qubit, the fidelity of this process should decrease only quadratically with error probability. We implement the correcting three-qubit gate (known as a conditional-conditional NOT, or Toffoli, gate) in 63 nanoseconds, using an interaction with the third excited state of a single qubit. We find 85 ± 1 per cent fidelity to the expected classical action of this gate, and 78 ± 1 per cent fidelity to the ideal quantum process matrix. Using this gate, we perform a single pass of both quantum bit- and phase-flip error correction and demonstrate the predicted first-order insensitivity to errors. Concatenation of these two codes in a nine-qubit device would correct arbitrary single-qubit errors. In combination with recent advances in superconducting qubit coherence times, this could lead to scalable quantum technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...