Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(13): 6750-6760, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38497776

ABSTRACT

Colloidal probe microscopy, a technique whereby a microparticle is affixed at the end of an atomic force microscopy (AFM) cantilever, plays a pivotal role in enabling the measurement of friction at the nanoscale and is of high relevance for applications and fundamental studies alike. However, in conventional experiments, the probe particle is immobilized onto the cantilever, thereby restricting its relative motion against a countersurface to pure sliding. Nonetheless, under many conditions of interest, such as during the processing of particle-based materials, particles are free to roll and slide past each other, calling for the development of techniques capable of measuring rolling friction alongside sliding friction. Here, we present a new methodology to measure lateral forces during rolling contacts based on the adaptation of colloidal probe microscopy. Using two-photon polymerization direct laser writing, we microfabricate holders that can capture microparticles, but allow for their free rotation. Once attached to an AFM cantilever, upon lateral scanning, the holders enable both sliding and rolling contacts between the captured particles and the substrate, depending on the interactions, while simultaneously giving access to normal and lateral force signals. Crucially, by producing particles with optically heterogeneous surfaces, we can accurately detect the presence of rotation during scanning. After introducing the workflow for the fabrication and use of the probes, we provide details on their calibration, investigate the effect of the materials used to fabricate them, and report data on rolling friction as a function of the surface roughness of the probe particles. We firmly believe that our methodology opens up new avenues for the characterization of rolling contacts at the nanoscale, aimed, for instance, at engineering particle surface properties and characterizing functional coatings in terms of their rolling friction.

2.
Nanoscale ; 16(5): 2444-2451, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38214073

ABSTRACT

The underlying mechanisms and physics of catalytic Janus microswimmers is highly complex, requiring details of the associated phoretic fields and the physiochemical properties of catalyst, particle, boundaries, and the fuel used. Therefore, developing a minimal (and more general) model capable of capturing the overall dynamics of these autonomous particles is highly desirable. In the presented work, we demonstrate that a coarse-grained dissipative particle-hydrodynamics model is capable of describing the behaviour of various chemical microswimmer systems. Specifically, we show how a competing balance between hydrodynamic interactions experienced by a squirmer in the presence of a substrate, gravity, and mass and shape asymmetries can reproduce a range of dynamics seen in different experimental systems. We hope that our general model will inspire further synthetic work where various modes of swimmer motion can be encoded via shape and mass during fabrication, helping to realise the still outstanding goal of microswimmers capable of complex 3-D behaviour.

3.
Soft Matter ; 19(17): 3069-3079, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37043248

ABSTRACT

Tracking the three-dimensional rotation of colloidal particles is essential to elucidate many open questions, e.g. concerning the contact interactions between particles under flow, or the way in which obstacles and neighboring particles affect self-propulsion in active suspensions. In order to achieve rotational tracking, optically anisotropic particles are required. We synthesise here rough spherical colloids that present randomly distributed fluorescent asperities and track their motion under different experimental conditions. Specifically, we propose a new algorithm based on a 3-D rotation registration, which enables us to track the 3-D rotation of our rough colloids at short time-scales, using time series of 2-D images acquired at high frame rates with a conventional wide-field microscope. The method is based on the image correlation between a reference image and rotated 3-D prospective images to identify the most likely angular displacements between frames. We first validate our approach against simulated data and then apply it to the cases of: particles flowing through a capillary, freely diffusing at solid-liquid and liquid-liquid interfaces, and self-propelling above a substrate. By demonstrating the applicability of our algorithm and sharing the code, we hope to encourage further investigations in the rotational dynamics of colloidal systems.

4.
Soft Matter ; 18(40): 7794-7803, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36193704

ABSTRACT

Surface roughness is an important design parameter to influence the processing of particle-based materials. Current methods to synthesize rough particles present some limitations, e.g. low yield, relative methodological complexity, requirements of multiple steps, or poor roughness control. Here, we thoroughly investigate a facile synthesis route where two silanes, tetraethyl orthosilicate (TEOS) and vinyltrimethoxysilane (VTMS), are added in one pot to form silica particles with controlled corrugated surfaces. We first show that the morphology of these particles can be defined by regulating the amount and ratio of the two silane precursors and by adjusting the concentration of ammonia during synthesis. We characterize the surface topography of the particles using atomic force microscopy and show a direct correlation between surface roughness and the synthesis conditions. Furthermore, we carry out an in situ observation of the evolution of surface morphology and propose a mechanism for surface structuring that hinges on the formation of silane droplets, followed by the preferential hydrolysis/condensation reaction of VTMS starting from the droplet surface and evolving towards the center. The exchange of liquid from the droplets through the VTMS shell leads to stress accumulation and wrinkling/buckling of the particles. Moreover, we explicitly show that osmotic imbalances between the inside and the outside of the droplets regulate their shrinking. We therefore demonstrate that exchanging solvents has a comparable impact to adjusting silane and ammonia content in defining the particle shape and that this synthesis route is highly dynamical. Finally, we demonstrate that it is possible to incorporate fluorescent dyes during synthesis to enable future studies on the impact of surface roughness on dynamic processes, including shear, via direct high-resolution imaging. Our findings show that the mechanism for wrinkling and buckling in colloidal silica particles follows a general scheme found in a broad range of systems, from liposomes and polymeric capsules to Pickering emulsion droplets.

SELECTION OF CITATIONS
SEARCH DETAIL
...