Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 187(2): 44, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25637388

ABSTRACT

Coral reef ecosystems fringing the coastline of Dahab (South Sinai, Egypt) have experienced increasing anthropogenic disturbance as an emergent international tourism destination. Previous reports covering tourism-related impacts on coastal environments, particularly mechanical damage and destructive fishing, have highlighted the vital necessity for regular ecosystem monitoring of coral reefs near Dahab. However, a continuous scientific monitoring programme of permanent survey sites has not been established to date. Thus, this study conducted in situ monitoring surveys to investigate spatio-temporal variability of benthic reef communities and selected reef-associated herbivores along with reef health indicator organisms by revisiting three of the locally most frequented dive sites during expeditions in March 2010, September 2011 and February 2013. In addition, inorganic nutrient concentrations in reef-surrounding waters were determined to evaluate bottom-up effects of key environmental parameters on benthic reef community shifts in relation to grazer-induced top-down control. Findings revealed that from 2010 to 2013, live hard coral cover declined significantly by 12 % at the current-sheltered site Three Pools (TP), while showing negative trends for the Blue Hole (BH) and Lighthouse (LH) sites. Hard coral cover decline was significantly and highly correlated to a substantial increase in turf algae cover (up to 57 % at TP) at all sites, replacing hard corals as dominant benthic space occupiers in 2013. These changes were correlated to ambient phosphate and ammonium concentrations that exhibited highest values (0.64 ± 0.07 µmol PO4 (3-) l(-1), 1.05 ± 0.07 µmol NH4 (+) l(-1)) at the degraded site TP. While macroalgae appeared to respond to both bottom-up and top-down factors, change in turf algae was consistent with expected indications for bottom-up control. Temporal variability measured in herbivorous reef fish stocks reflected seasonal impacts by local fisheries, with concomitant changes in macroalgal cover. These findings represent the first record of rapid, localised change in benthic reef communities near Dahab, consistent with indications for bottom-up controlled early-stage phase shifts, underlining the necessity for efficient regional wastewater management for coastal facilities.


Subject(s)
Coral Reefs , Environmental Monitoring , Eutrophication , Animals , Anthozoa , Ecosystem , Egypt , Fisheries , Fishes , Herbivory , Humans , Indian Ocean , Seaweed
2.
J Exp Biol ; 215(Pt 20): 3672-9, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22811248

ABSTRACT

The release of organic matter (OM) by scleractinian corals represents a key physiological process that importantly contributes to coral reef ecosystem functioning, and is affected by inorganic nutrient availability. Although OM fluxes have been studied for several dominant reef taxa, no information is available for soft corals, one of the major benthic groups in tropical reef environments. Thus, this study investigates OM fluxes along with other key physiological parameters (i.e. photosynthesis, respiration and chlorophyll a tissue content) in the common soft coral genus Xenia after a 4-week exposure period to elevated ammonium (N; 20.0 µmol l(-1)), phosphate (P; 2.0 µmol l(-1)) and combined inorganic nutrient enrichment treatment (N+P). Corals maintained without nutrient enrichment served as non-treated controls and revealed constant uptake rates for particulate organic carbon (POC) (-0.315±0.161 mg POC m(-2) coral surface area h(-1)), particulate nitrogen (PN) (-0.053±0.018 mg PN m(-2) h(-1)) and dissolved organic carbon (DOC) (-4.8±2.1 mg DOC m(-2) h(-1)). Although DOC uptake significantly increased in the N treatment, POC flux was not affected. The P treatment significantly enhanced PN release as well as photosynthesis and respiration rates, suggesting that autotrophic carbon acquisition of zooxanthellae endosymbionts influences OM fluxes by the coral host. Our physiological findings confirm the significant effect of inorganic nutrient availability on OM fluxes and key metabolic processes for the soft coral Xenia, and provide the first clues on OM cycles initiated by soft corals in reef environments exposed to ambient and elevated inorganic nutrient concentrations.


Subject(s)
Anthozoa/metabolism , Carbon/metabolism , Ecosystem , Phosphates , Quaternary Ammonium Compounds , Animals , Coral Reefs , Microalgae/physiology , Organic Chemicals , Particulate Matter , Seawater , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...