Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Hum Behav ; 4(10): 1004-1010, 2020 10.
Article in English | MEDLINE | ID: mdl-32632332

ABSTRACT

The Neolithic transition in Europe was driven by the rapid dispersal of Near Eastern farmers who, over a period of 3,500 years, brought food production to the furthest corners of the continent. However, this wave of expansion was far from homogeneous, and climatic factors may have driven a marked slowdown observed at higher latitudes. Here, we test this hypothesis by assembling a large database of archaeological dates of first arrival of farming to quantify the expansion dynamics. We identify four axes of expansion and observe a slowdown along three axes when crossing the same climatic threshold. This threshold reflects the quality of the growing season, suggesting that Near Eastern crops might have struggled under more challenging climatic conditions. This same threshold also predicts the mixing of farmers and hunter-gatherers as estimated from ancient DNA, suggesting that unreliable yields in these regions might have favoured the contact between the two groups.


Subject(s)
Agriculture/history , Climate , DNA, Ancient , Paleontology , Population Dynamics/history , Europe , History, Ancient , Humans , Middle East
2.
Science ; 358(6363): 659-662, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28982795

ABSTRACT

Present-day hunter-gatherers (HGs) live in multilevel social groups essential to sustain a population structure characterized by limited levels of within-band relatedness and inbreeding. When these wider social networks evolved among HGs is unknown. To investigate whether the contemporary HG strategy was already present in the Upper Paleolithic, we used complete genome sequences from Sunghir, a site dated to ~34,000 years before the present, containing multiple anatomically modern human individuals. We show that individuals at Sunghir derive from a population of small effective size, with limited kinship and levels of inbreeding similar to HG populations. Our findings suggest that Upper Paleolithic social organization was similar to that of living HGs, with limited relatedness within residential groups embedded in a larger mating network.


Subject(s)
Genome, Human , Reproductive Behavior/history , Social Behavior/history , DNA, Ancient , History, Ancient , Humans , Population Density , Russia
3.
Curr Biol ; 27(4): 576-582, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28162894

ABSTRACT

The Neolithic transition was a dynamic time in European prehistory of cultural, social, and technological change. Although this period has been well explored in central Europe using ancient nuclear DNA [1, 2], its genetic impact on northern and eastern parts of this continent has not been as extensively studied. To broaden our understanding of the Neolithic transition across Europe, we analyzed eight ancient genomes: six samples (four to ∼1- to 4-fold coverage) from a 3,500 year temporal transect (∼8,300-4,800 calibrated years before present) through the Baltic region dating from the Mesolithic to the Late Neolithic and two samples spanning the Mesolithic-Neolithic boundary from the Dnieper Rapids region of Ukraine. We find evidence that some hunter-gatherer ancestry persisted across the Neolithic transition in both regions. However, we also find signals consistent with influxes of non-local people, most likely from northern Eurasia and the Pontic Steppe. During the Late Neolithic, this Steppe-related impact coincides with the proposed emergence of Indo-European languages in the Baltic region [3, 4]. These influences are distinct from the early farmer admixture that transformed the genetic landscape of central Europe, suggesting that changes associated with the Neolithic package in the Baltic were not driven by the same Anatolian-sourced genetic exchange.


Subject(s)
Agriculture/history , Cultural Evolution , Farmers , Genome, Human/genetics , Archaeology , DNA, Ancient/analysis , History, Ancient , Human Migration , Humans , Latvia , Ukraine , White People/genetics
4.
Science ; 346(6213): 1113-8, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25378462

ABSTRACT

The origin of contemporary Europeans remains contentious. We obtained a genome sequence from Kostenki 14 in European Russia dating from 38,700 to 36,200 years ago, one of the oldest fossils of anatomically modern humans from Europe. We find that Kostenki 14 shares a close ancestry with the 24,000-year-old Mal'ta boy from central Siberia, European Mesolithic hunter-gatherers, some contemporary western Siberians, and many Europeans, but not eastern Asians. Additionally, the Kostenki 14 genome shows evidence of shared ancestry with a population basal to all Eurasians that also relates to later European Neolithic farmers. We find that Kostenki 14 contains more Neandertal DNA that is contained in longer tracts than present Europeans. Our findings reveal the timing of divergence of western Eurasians and East Asians to be more than 36,200 years ago and that European genomic structure today dates back to the Upper Paleolithic and derives from a metapopulation that at times stretched from Europe to central Asia.


Subject(s)
DNA/genetics , Genome, Human/genetics , White People/genetics , DNA/history , Europe , Fossils , Genomics , History, Ancient , Humans , Male , Siberia , White People/history
5.
Proc Natl Acad Sci U S A ; 111(40): 14394-9, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25246543

ABSTRACT

The first settlement of Europe by modern humans is thought to have occurred between 50,000 and 40,000 calendar years ago (cal B.P.). In Europe, modern human remains of this time period are scarce and often are not associated with archaeology or originate from old excavations with no contextual information. Hence, the behavior of the first modern humans in Europe is still unknown. Aurignacian assemblages--demonstrably made by modern humans--are commonly used as proxies for the presence of fully behaviorally and anatomically modern humans. The site of Willendorf II (Austria) is well known for its Early Upper Paleolithic horizons, which are among the oldest in Europe. However, their age and attribution to the Aurignacian remain an issue of debate. Here, we show that archaeological horizon 3 (AH 3) consists of faunal remains and Early Aurignacian lithic artifacts. By using stratigraphic, paleoenvironmental, and chronological data, AH 3 is ascribed to the onset of Greenland Interstadial 11, around 43,500 cal B.P., and thus is older than any other Aurignacian assemblage. Furthermore, the AH 3 assemblage overlaps with the latest directly radiocarbon-dated Neanderthal remains, suggesting that Neanderthal and modern human presence overlapped in Europe for some millennia, possibly at rather close geographical range. Most importantly, for the first time to our knowledge, we have a high-resolution environmental context for an Early Aurignacian site in Central Europe, demonstrating an early appearance of behaviorally modern humans in a medium-cold steppe-type environment with some boreal trees along valleys around 43,500 cal B.P.


Subject(s)
Archaeology/methods , Cold Temperature , Ecosystem , Fossils , Animals , Austria , Europe , Geography , Hominidae , Humans , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...