Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 225: 117488, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33164856

ABSTRACT

Networks in the prefrontal cortex (PFC) that are important for executive function are also engaged in adaptive responding to negative events. These networks are particularly vulnerable to age-related structural atrophy and an associated loss of executive function, yet existing evidence suggests preserved emotion processing ability in ageing. Using longitudinally acquired data from a battery of cognitive tasks, we defined a metric for the rate of decline of executive function. With this metric, we investigated relationships between changes in executive function and emotion reappraisal ability and brain structure, in 34 older adults, using functional and structural MRI. During task-based fMRI, participants were asked to cognitively reappraise negatively valenced images. We hypothesised one of two associations with decreasing executive function over time: 1) a decreased ability to reappraise reflected in decreased PFC and increased amygdala activation, or 2) a neural compensation mechanism characterised by increased PFC activation but no differential amygdala activation. Structurally, for a decreased reappraisal ability, we predicted a decrease in grey matter in PFC and/or a decrease of white matter integrity in amygdala-PFC pathways. Neither of the two hypotheses relating to brain function were completely supported, with the findings indicating a steeper decline in executive function associated with both increased PFC and increased left amygdala activity when reappraising negative stimuli. In addition, white matter integrity of the uncinate fasciculus, a primary white matter tract connecting the amygdala and ventromedial areas of PFC, was lower in those individuals who demonstrated a greater decrease in executive function. These findings highlight the association of diminishing cognitive ability with brain structure and function linked to emotion regulation.


Subject(s)
Aging/physiology , Executive Function/physiology , Prefrontal Cortex/physiology , Aged , Aged, 80 and over , Amygdala/physiology , Brain/physiology , Brain Mapping , Diffusion Tensor Imaging , Emotions/physiology , Female , Gray Matter/physiology , Humans , Middle Aged , Nerve Net/physiology , Neural Pathways/physiology , White Matter/physiology
2.
Biol Psychiatry ; 87(6): 559-569, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31604519

ABSTRACT

BACKGROUND: Maternal prenatal stress exposure (PNSE) increases risk for adverse psychiatric and behavioral outcomes in offspring. The biological basis for this elevated risk is poorly understood but may involve alterations to the neurodevelopmental trajectory of white matter tracts within the limbic system, particularly the uncinate fasciculus. Additionally, preterm birth is associated with both impaired white matter development and adverse developmental outcomes. In this study we hypothesized that higher maternal PNSE was associated with altered uncinate fasciculus microstructure in offspring. METHODS: In this study, 251 preterm infants (132 male, 119 female) (median gestational age = 30.29 weeks [range, 23.57-32.86 weeks]) underwent brain magnetic resonance imaging including diffusion-weighted imaging around term-equivalent age (median = 42.43 weeks [range, 37.86-45.71 weeks]). Measures of white matter microstructure were calculated for the uncinate fasciculus and the inferior longitudinal fasciculus, a control tract that we hypothesized was not associated with maternal PNSE. Multiple regressions were used to investigate the relationship among maternal trait anxiety scores, stressful life events, and white matter microstructure indices in the neonatal brain. RESULTS: Adjusting for gestational age at birth, postmenstrual age at scan, maternal age, socioeconomic status, sex, and number of days on parenteral nutrition, higher stressful life events scores were associated with higher axial diffusivity (ß = .177, q = .007), radial diffusivity (ß = .133, q = .026), and mean diffusivity (ß = .149, q = .012) in the left uncinate fasciculus, and higher axial diffusivity (ß = .142, q = .026) in the right uncinate fasciculus. CONCLUSIONS: These findings suggest that PNSE is associated with altered development of specific frontolimbic pathways in preterm neonates as early as term-equivalent age.


Subject(s)
Premature Birth , White Matter , Brain , Diffusion Tensor Imaging , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Male , Pregnancy , Uncinate Fasciculus , White Matter/diagnostic imaging
3.
Development ; 145(24)2018 12 14.
Article in English | MEDLINE | ID: mdl-30413560

ABSTRACT

Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.This article has an associated 'The people behind the papers' interview.


Subject(s)
Central Nervous System/physiology , Homeostasis , Nerve Regeneration/physiology , Neural Stem Cells/cytology , Peripheral Nerves/physiology , Animals , Axons/metabolism , Carcinogenesis/pathology , Cell Proliferation , Extracellular Matrix Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/metabolism , Neural Stem Cells/metabolism , Neuronal Plasticity , Peripheral Nerves/cytology , Peripheral Nerves/ultrastructure , Schwann Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...