Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Anim Sci J ; 95(1): e13970, 2024.
Article in English | MEDLINE | ID: mdl-38894628

ABSTRACT

Various studies have attempted to improve the milk yield and composition in dairy animals. However, no study has examined the effects of milking at different times on milk yield and composition. Therefore, this study aimed to compare the yield, composition, and antimicrobial components of milk obtained from milking at different times in lactating goats. Eight goats were milked once daily at different times for three consecutive weeks (first week: 06:00 h; second week: 09:00 h; and third week: 12:00 h). The light ranged from 06:30 to 19:00 h. Milk and blood samples were collected once a day during milking time. Milking at 09:00 h resulted in a significantly higher milk yield than that obtained after milking at 06:00 and 12:00 h. Prolactin levels in plasma and the fat, Na+, ß-defensin, and S100A7 (antimicrobial component) levels in milk were the lowest in the 09:00 h milking. These results indicate that milk yield, composition, and antimicrobial components can be affected by milking time, which may be related to the altered concentration of prolactin in the blood. These findings provide a rational basis for achieving maximal milk production with strong immunity by changing to a more effective milking time.


Subject(s)
Goats , Lactation , Milk , Prolactin , beta-Defensins , Animals , Goats/physiology , Female , Milk/chemistry , Prolactin/blood , Time Factors , beta-Defensins/analysis , Dairying/methods , Sodium/blood , Sodium/analysis , Anti-Infective Agents/analysis
2.
Vet Immunol Immunopathol ; 272: 110774, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38735114

ABSTRACT

This study examined the effects of low frequency milking on the concentrations of antimicrobial components in goat milk. Sixteen goats were divided into two groups of eight each: milking once every 2 d three times (for six days, three times group) or five times (for 10 days, five times group). On other days, milking was performed once daily. Milk was collected, and milk yield, somatic cell count (SCC), and the concentrations of some antimicrobial proteins such as lactoferrin (LF), S100A7, IgA, and sodium ions (Na+) in milk were measured. Milk yield significantly decreased in both the groups during the low-milking frequency period, followed by an increase above the low frequency milking period in both groups. In contrast, SCC and LF concentrations in milk increased in both groups during the low frequency milking period. The concentration of S100A7 in milk temporarily decreased after the low frequency milking period, followed by a significant increase. The S100A7 concentration during this period was higher in the five times group than in the three times group. These results indicated that low frequency milking induced a gradual decrease in milk yield and a concomitant increase in antimicrobial components, such as LF and S100A7, in milk. This increase in the antimicrobial components may be useful in preventing mastitis.


Subject(s)
Dairying , Goats , Lactation , Lactoferrin , Milk , Animals , Milk/chemistry , Female , Lactoferrin/analysis , Dairying/methods , Immunoglobulin A/analysis , Mastitis/veterinary , S100 Calcium Binding Protein A7 , Cell Count/veterinary , Sodium/analysis
3.
J Poult Sci ; 61: 2024008, 2024.
Article in English | MEDLINE | ID: mdl-38481975

ABSTRACT

The avian immune system plays a vital role in poultry production to obtain good productibility and products that are safe and of high quality. Historically, adaptive immunity has been the main target of vaccination. However, over the past decade, innate immunity has been reported to be enhanced in different animals through vaccination and feed additives. This enhancement is due to innate immune memory termed "trained immunity," in which epigenetic and metabolic reprogramming play significant roles. Although reports on trained immunity in poultry are limited, several studies have suggested that vaccinations and feed additives affect the innate immunity. This review discusses the possible effects of vaccination and ß-glucan on innate immunity for potential incorporation in advanced strategies to enhance the defense function in poultry while considering the information on trained immunity in mammals.

4.
J Dairy Res ; 91(1): 70-72, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38361416

ABSTRACT

We investigated the antimicrobial components in cow milk at dry off and postpartum and their contribution in preventing new high SCC at quarter level. Milk samples from 72 quarters of 19 lactating cows were collected at last milking before dry off and at 7 d after parturition. Milk yield of each cow was recorded and SCC, IgG, IgA, lactoferrin, lingual antimicrobial peptide (LAP), and S100A7 concentrations in each quarter milk sample were measured. The postpartum milk yield was significantly higher than that at dry off. The IgG, IgA and lactoferrin concentrations in milk at dry off were significantly higher than those at postpartum, whereas the LAP concentration was lower. Quarters with SCC < 300 000 cells/ml at both dry off and postpartum were classified as persistent low SCC (PL) whereas those that rose above that same threshold postpartum were classified as new high SCC (NH). At dry off, IgG and LAP concentrations in milk were significantly higher in PL than in NH. These results suggest that high LAP concentrations during the dry period may contribute toward the prevention of new high SCC.


Subject(s)
Immunoglobulin A , Immunoglobulin G , Lactation , Lactoferrin , Milk , Postpartum Period , Animals , Cattle , Female , Milk/chemistry , Lactoferrin/analysis , Lactation/physiology , Cell Count/veterinary , Immunoglobulin G/analysis , Immunoglobulin A/analysis , Mastitis, Bovine/prevention & control , beta-Defensins
5.
Anim Sci J ; 95(1): e13926, 2024.
Article in English | MEDLINE | ID: mdl-38348633

ABSTRACT

The aim of this study was to examine the effects of milking cessation under different inflammatory conditions on the changes in antimicrobial components in milk and the process of mammary gland involution. Twenty udder halves were divided into two groups: those with (LPS) and without (control) lipopolysaccharide infusion, followed by cessation of milking for 8 weeks. Milk samples were collected weekly. Udder tissue was collected 4 weeks after milking cessation to measure the area of the lobule and connective tissue. After milking cessation, the somatic cell count (SCC) in the control group increased, whereas that in the LPS group did not. Lactoferrin (LF) and cathelicidin (Cath)-2 concentrations increased in both groups, whereas only LF was significantly lower in the LPS group than in the control group at week 4. The Cath-7 and S100A8 concentrations were significantly lower in the LPS group than in the control group. The lobule area was higher, and the connective tissue area was lower in the LPS group than in the control group. These results indicate that inflammation at milking cessation decreased the concentrations of some antimicrobial components and interfered with mammary gland involution. Therefore, animals with mastitis should recover prior to the onset of the dry period.


Subject(s)
Anti-Infective Agents , Goat Diseases , Female , Animals , Milk , Lactation , Lipopolysaccharides/pharmacology , Mammary Glands, Animal , Goats , Anti-Infective Agents/pharmacology , Inflammation/veterinary , Cell Count/veterinary
6.
Vet Res ; 55(1): 20, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365712

ABSTRACT

In mammary glands, the formation of less-permeable tight junctions (TJs) and the production of antimicrobial compounds like lactoferrin and defensins are important for preventing mastitis. Resveratrol, a polyphenol contained in red grapes, is known to protect mammary epithelial cells (MECs) from oxidative stress; however, oral administration of resveratrol causes a decrease in certain biological processes through conjugation and metabolic conversion. In this study, we determined the beneficial effects of resveratrol on TJs and antimicrobial compounds in cultured goat MECs by adding it to the medium, and in lactating goat mammary glands by topical application for percutaneous absorption. TJ barrier function was evaluated by transepithelial resistance and expression or localization pattern of claudins for culture model in vitro and by somatic cell count, Na+, albumin, and IgG in milk for topical application in vivo. Concentrations of antimicrobial compounds and cytokines were measured using ELISA. Activation of STAT3 was evaluated by Western blotting. Resveratrol strengthened TJ barrier function by upregulating claudin-3 in cultured MECs and topical application to udders reduced somatic cell count, Na+, albumin, and IgG in milk. Resveratrol increased ß-defensin and S100A7 levels in cultured MECs and milk. In addition, resveratrol down-regulated cytokine production and STAT3 pathway. These findings suggest that the topical application of resveratrol to udders may be effective in preventing mastitis.


Subject(s)
Anti-Infective Agents , Goat Diseases , Mastitis , Female , Animals , Tight Junctions , Lactation/metabolism , Resveratrol/pharmacology , Resveratrol/metabolism , Epithelial Cells/metabolism , Milk/metabolism , Mammary Glands, Animal/metabolism , Mastitis/drug therapy , Mastitis/prevention & control , Mastitis/veterinary , Anti-Infective Agents/pharmacology , Goats , Albumins/metabolism , Albumins/pharmacology , Immunoglobulin G/metabolism , Goat Diseases/metabolism
7.
Exp Cell Res ; 436(1): 113944, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38296017

ABSTRACT

In lactating mammary glands, tight junctions (TJs) prevent blood from mixing with milk and maintain epithelial cell polarity, which is important for milk production. This study aimed to investigate the effect of sodium acetate and sodium butyrate (SB) stimulation direction on the TJ barrier function, which is measured with regard to transepithelial electrical resistance and fluorescein flux, in goat mammary epithelial cells. The expression and localization of the TJ proteins claudin-3 and claudin-4 were examined using Western blotting and immunofluorescence. SB treatment in the lower chamber of cell culture inserts adversely affected the TJ barrier function, whereas sodium acetate barely had any effect, regardless of stimulation direction. In addition, SB treatment in the lower chamber significantly upregulated claudin-3 and claudin-4, whereas TJ proteins showed intermittent localization. Moreover, SB induced endoplasmic reticulum (ER) stress. ARC155858, a monocarboxylate transporter-1 inhibitor, alleviated the adverse impact of SB on TJs and the associated ER stress. Interestingly, sodium ß-hydroxybutyrate, a butyrate metabolite, did not affect the TJ barrier function. Our findings indicate that sodium acetate and SB influence the TJ barrier function differently, and excessive cellular uptake of SB can disrupt TJs and induce ER stress.


Subject(s)
Goats , Tight Junctions , Animals , Female , Butyric Acid/pharmacology , Claudin-3 , Claudin-4/genetics , Lactation , Sodium Acetate , Epithelial Cells , Membrane Transport Proteins
8.
Theriogenology ; 212: 104-110, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717513

ABSTRACT

Previous studies have shown that a single infusion of lipopolysaccharide (LPS) into the uterus induces mammary gland inflammation. However, repeated LPS infusions return the mammary glands to their basal state of inflammation. To confirm that this is a state of tolerance to LPS, we examined whether tolerance induced by repeated intrauterine LPS infusions limits mammary gland inflammation following subsequent intramammary LPS infusions. In the first experiment, three goats were treated with repeated intrauterine infusions of LPS dissolved in black ink for 5 consecutive days. Blood and milk samples were collected at 2, 4, 6, 12, 24, 48, 72, 96, and 120 h and smeared on glass slides to confirm the translocation of LPS from the uterus to the mammary gland. Black particles were detected in the blood and milk samples more than 2 h after the first infusion and in the connective tissue of the mammary gland after day 5. In the second experiment, goats were divided into two groups: an intrauterine infusion group (IU; n = 7) and a control group (CON; n = 6). The IU group received an intrauterine infusion of 100 µg of LPS in saline for 5 days. Subsequently, LPS was infused into the mammary glands of both groups to examine the effect of intrauterine treatment on the mammary inflammatory response after intramammary LPS infusion. Blood and milk samples were collected at 6, 12, and 24 h, and then daily until 7 d after the intramammary LPS challenge. Interestingly, a significant increase in the milk somatic cell count (SCC), IL-8, IL-1ß, and TNF-α concentrations were observed in the CON group compared to the IU group. This suggests that pretreatment with repeated intrauterine infusions of LPS suppresses the inflammatory responses to subsequent intramammary LPS challenges.

9.
Innate Immun ; 29(7): 135-149, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37605866

ABSTRACT

In the mammary glands, production of antimicrobial components and formation of less-permeable tight junctions (TJs) are important for safe milk production. Previously, we reported that local heat treatment of udders using disposable heating pad enhances the components of innate immunity in lactating goat mammary glands. Gingerol is a polyphenol present in ginger that can induce heat-like effects. However, oral administration of polyphenols causes a decrease in biological activity through conjugation and metabolic conversion. Here, we investigated the effects of gingerol on antimicrobial components and TJs by topically applying it to lactating goat udders. Gingerol application increased the somatic cell count, cathelicidin-2 concentration, and proportion of polymorphonuclear cells in the milk and interleukin-8 production. Moreover, gingerol treatment enhanced ß-defensin-1 production in milk, cultured mammary epithelial cells, and cultured somatic cells. Contrastingly, gingerol treatment did not affect the concentrations of blood-derived components (Na+, albumin, and IgG) in the milk or the TJ barrier function of cultured mammary epithelial cells. These findings suggest that the topical application of gingerol, similar to local heat treatment, to udders enhances the components of innate immunity in mammary glands. These findings may be useful for the prevention of mastitis in milk-producing animals and, hence, safe and stable dairy production.

11.
Anim Sci J ; 94(1): e13832, 2023.
Article in English | MEDLINE | ID: mdl-36991576

ABSTRACT

Mammary glands with mastitis are usually treated with antibiotics in combination with anti-inflammatory drug application on the udder skin. Menthol is an anti-inflammatory drug. The aim of the present study was to investigate the effect of surface application of menthol on goat udders on the production of antimicrobial components in milk. Goats (5 Shiba and 11 Tokara goats) were subjected to menthol application to the udder under both healthy and inflammatory conditions. An intramammary infusion of lipopolysaccharides was carried out to induce inflammatory conditions in the udder. Milk samples were collected to determine somatic cell count (SCC) and sodium ion (Na+ ), antimicrobial component and cytokine concentrations. In healthy udders, menthol application increased the concentration of antimicrobial components (S100A7 and S100A8), but not in the control. In the inflamed udder, antimicrobial component (lactoferrin, S100A7, and S100A8) and inflammatory cytokine (IL-1ß) concentrations were higher in the menthol group than in the control group. These results suggest that menthol application on udders augments the antimicrobial component concentration in the mammary gland under both healthy and inflammatory conditions.


Subject(s)
Anti-Infective Agents , Milk , Female , Animals , Mammary Glands, Animal , Menthol/pharmacology , Goats , Anti-Infective Agents/pharmacology , Cytokines
12.
J Mammary Gland Biol Neoplasia ; 28(1): 3, 2023 02 18.
Article in English | MEDLINE | ID: mdl-36801983

ABSTRACT

The production of antimicrobial components and the formation of less-permeable tight junctions (TJs) are important in the defense system of lactating mammary glands and for safe dairy production. Valine is a branched-chain amino acid that is actively consumed in the mammary glands and promotes the production of major milk components like ß-casein; additionally, branched-chain amino acids stimulate antimicrobial component production in the intestines. Therefore, we hypothesized that valine strengthens the mammary gland defense system without influencing milk production. We investigated the effects of valine in vitro using cultured mammary epithelial cells (MECs) and in vivo using the mammary glands of lactating Tokara goats. Valine treatment at 4 mM increased the secretion of S100A7 and lactoferrin as well as the intracellular concentration of ß-defensin 1 and cathelicidin 7 in cultured MECs. In addition, an intravenous injection of valine increased S100A7 levels in the milk of Tokara goats without influencing milk yield and milk components (i.e., fat, protein, lactose, and solids). In contrast, valine treatment did not affect TJ barrier function either in vitro or in vivo. These findings indicate that valine enhances antimicrobial component production without influencing milk production and TJ barrier function in lactating mammary glands; thus, valine contributes to safe dairy production.


Subject(s)
Anti-Infective Agents , Milk , Female , Animals , Milk/metabolism , Tight Junctions/metabolism , Lactation/metabolism , Valine/pharmacology , Valine/analysis , Valine/metabolism , Mammary Glands, Animal/metabolism , Epithelial Cells/metabolism , Anti-Infective Agents/pharmacology , Anti-Infective Agents/analysis , Anti-Infective Agents/metabolism , Goats
13.
J Poult Sci ; 60(1): 2023005, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36756044

ABSTRACT

The aim of this study was to determine whether Newcastle disease/infectious bronchitis (ND/IB) vaccination and yeast product diet supplementation modulate the expression of innate immune molecules in the proventriculus and ileum of broiler chicks. One-day-old male broiler chicks were divided into four groups (V-Y- (control), V-Y+, V+Y-, and V+Y+ groups, where V and Y represent vaccination and yeast product supplementation, respectively). Chicks in the V+Y- and V+Y+ groups were immunized with the live ND/IB vaccine, whereas chicks in the V-Y- and V-Y+ groups were not. Chicks in the V-Y+ and V+Y+ groups received feed containing yeast products from day 4, whereas chicks in the V-Y- and V+Y- groups did not. The proventriculus and ileum were collected on day 7 to analyze the expression of seven Toll-like receptors (TLRs) and Dectin-1. In the proventriculus, compared with those of the V-Y- control group, the TLR7 and TLR21 expression levels were higher in the V+Y- group; however, there were no differences in the expression levels of any TLR or Dectin-1 in the ileum. There were also no differences in the expression of avian ß-defensins and cathelicidin-1 in the proventriculus and ileum between the control and treatment groups. The expression of granzyme in cytotoxic cells and interleukin (IL)-1B was upregulated by ND/IB vaccination in the proventriculus. Supplementation with yeast products upregulated only granzyme expression in the ileum and downregulated IL-6 expression in the proventriculus in chicks immunized with the ND/IB vaccine. Thus, we concluded that ND/IB vaccination is effective at enhancing the innate immune system in the proventriculus of chicks, at least until day 7 post-hatching, whereas the effects of diet supplementation with yeast products may be limited, at least under the present study conditions.

14.
Anim Sci J ; 93(1): e13773, 2022.
Article in English | MEDLINE | ID: mdl-36274645

ABSTRACT

Heat stress impacts the immune system of dairy animals by altering the hypothalamic-pituitary-adrenal axis and thyroid function, leading to conditions such as hypothyroidism and hypercortisolism. This study aimed to elucidate the effect of hypothyroidism and hypercortisolism on the response of mammary innate immune function to inflammation caused by Escherichia coli in dairy goats. To induce hypothyroidism and hypercortisolism, we administered 6-n-propyl-2-thiouracil (PTU; for 21 days) and dexamethasone (DEX; for 5 days), respectively, to six goats each; six goats without treatment were used as the control group. After treatment, lipopolysaccharide (LPS) from E. coli O111 was infused into the mammary gland. Somatic cell counts (SCC) and levels of lactoferrin (LF), S100A7, immunoglobulin A (IgA), and interleukin-8 (IL-8) in milk until 7 days after LPS infusion were measured. An increase in SCC after LPS infusion was inhibited in both PTU and DEX groups, and an increase in LF after LPS infusion was inhibited in PTU group, compared with that in the control group. The results of the present study suggest that the recruitment of neutrophils and LF production decreased under hypothyroidism or hypercortisolism, which may be one of the causes underlying increased incidence of mastitis in dairy animals under heat stress conditions.


Subject(s)
Anti-Infective Agents , Cattle Diseases , Cushing Syndrome , Goat Diseases , Hypothyroidism , Mastitis, Bovine , Female , Animals , Cattle , Milk , Lipopolysaccharides , Interleukin-8 , Mammary Glands, Animal , Lactoferrin/pharmacology , Escherichia coli , Propylthiouracil/pharmacology , Hypothalamo-Hypophyseal System , Cushing Syndrome/veterinary , Pituitary-Adrenal System , Goats , Anti-Infective Agents/pharmacology , Immunoglobulin A , Hypothyroidism/veterinary , Dexamethasone/pharmacology
15.
Res Vet Sci ; 152: 387-394, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36108551

ABSTRACT

A temporary cessation of milking is widely used in Japan to treat mastitis in dairy cows. Exogenous administration of estradiol (E2) is known to inhibit milk production in dairy cows. Therefore, we aimed to evaluate the effects of the temporary cessation of milking in combination with E2 administration on the antimicrobial components of goat milk. Twelve goats, divided into two groups-with and without E2 injection (E2 and control group, respectively), were subjected to cessation of milking in both udder halves for 3 d (day 0-2). Milk yield in the E2 group was significantly lower than that in the control group on days 7 to 10. The concentrations of cathelicidin-2, IgA, and lactoferrin in the E2 group were significantly higher than those in the control group. These results suggest that the temporary cessation of milking with simultaneous E2 administration leads to a higher concentration of certain antimicrobial components in milk than that observed after using cessation of milking alone. Thus, this combination may contribute to a stronger innate immune system and a faster recovery from mastitis, and might prove to be an alternative to antibiotic treatment upon further research.


Subject(s)
Cattle Diseases , Goat Diseases , Mastitis , Cattle , Female , Animals , Milk , Lactation , Estradiol/pharmacology , Mammary Glands, Animal , Goats , Anti-Bacterial Agents/pharmacology , Mastitis/veterinary , Dairying/methods
16.
Theriogenology ; 193: 87-92, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36156428

ABSTRACT

A single infusion of lipopolysaccharide (LPSs) into the uterus induces inflammation in the mammary gland. This indicates that LPS can translocate from the uterus to the mammary gland. Natural endometritis is characterized by continuous intrauterine inflammation. The aim of the present study was to determine the effect of repeated intrauterine infusion of two different types of LPSs obtained from Escherichia coli O111:B4 (LPS-O111) and O55:B5 (LPS-O55) on the inflammatory status of the mammary glands of goats. Goats were assigned to three groups: LPS-O111, LPS-O55, and saline (control). Saline with (LPS-O111 and 55 groups) and without (control) 100 µg LPS was infused into the uterus continuously for 7 days. Decreased milk yield was detected in both LPS-O111 and LPS-O55 groups 2 days after the first LPS infusion. While somatic cell count (SCC) was significantly increased in all groups 1 day after the first LPS infusion, both LPS infusions further increased SCC 2 days after the first infusion and showed a significantly higher SCC than that in the control group. Plasma LPS-binding protein (LBP) was significantly higher in both LPS groups than in the control group during the days after infusion. In addition, pro-inflammatory cytokines, interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and IL-8, were significantly increased in both LPS infusion groups compared with those in the control group. The LPS-O111 infusion resulted in higher SCC, LBP, TNF-α, and IL-8 concentrations than those in the LPS-O55 group. These results suggest that repeated LPS infusion into the uterus can induce more severe mammary gland inflammation than a single infusion. Interestingly, the mammary tissues recovered from inflammation even though the LPS intrauterine infusion was continued.


Subject(s)
Goat Diseases , Mastitis , Animals , Cytokines/metabolism , Female , Goat Diseases/chemically induced , Goats/metabolism , Inflammation/metabolism , Inflammation/veterinary , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Lipopolysaccharides/toxicity , Mammary Glands, Animal , Mastitis/chemically induced , Mastitis/veterinary , Tumor Necrosis Factor-alpha/metabolism
17.
Front Immunol ; 13: 941333, 2022.
Article in English | MEDLINE | ID: mdl-36032165

ABSTRACT

Ectopic tertiary lymphoid organs (TLOs) have been identified in many organs, such as the lungs, nasal cavities, and kidneys of both mice and humans. Although lymphocyte aggregates have been observed in the mammary glands of ruminants, the details remain unclear. In this study, we investigated the mammary glands of lactating goats for the presence of TLOs. The localization of CD20 (B cells), CD3 (T cells), MECA79 (high endothelial venules), CD40 (follicular dendritic cells), BCL6 (germinal center), and IgA was examined by immunohistochemistry. The concentrations of IgG, IgA, lactoferrin, ß-defensin-1, cathelicidin-2, cathelicidin-7, S100A7, and S100A8 in milk were measured by ELISA. The localization and amount of tight junction (TJ) proteins (claudin-3 and claudin-4) were examined using immunofluorescence and western blotting. We found that 19 out of 30 udders contained lymphocyte aggregates, which showed positive reactions against CD20, CD3, CD40, and MECA79. In addition, large-sized aggregations showed separate localization of B cells and T cells and a positive reaction against BCL6, although BCL6 was sparsely localized in the aggregations. These results indicate that mammary glands of lactating goats contain TLOs. The IgG and IgA concentrations in the milk of TLO-positive goats and the number of IgA-positive cells were higher than those in negative goats. Furthermore, claudin-4 was localized in the TJ region and the amount was higher in TLO-positive mammary glands than that in the negative group, indicating the presence of leakages at TJs. In conclusion, a majority of lactating goat udders have TLOs, which contribute to local immunity by producing immunoglobulins.


Subject(s)
Goats , Lactation , Lymphoid Tissue , Mammary Glands, Animal , Animals , Claudin-4 , Female , Immunoglobulin A , Immunoglobulin G , Lymphoid Tissue/anatomy & histology , Mammary Glands, Animal/anatomy & histology
18.
J Mammary Gland Biol Neoplasia ; 27(2): 133-144, 2022 06.
Article in English | MEDLINE | ID: mdl-35678903

ABSTRACT

Short-chain fatty acids activate antimicrobial component production in the intestine. However, their effects on mammary glands remain unclear. We investigated the effects of acetate and butyrate on antimicrobial component production in mammary epithelial cells (MECs) or leukocytes cultured in vitro and in mammary glands of lactating Tokara goats in vivo. Our results showed that butyrate enhanced the production of ß-defensin-1 and S100A7 in MECs. Additionally, the infusion of butyrate into mammary glands through the teats enhanced ß-defensin-1 and S100A7 concentrations in milk. The infusion of acetate also increased ß-defensin-1 and S100A7 concentrations along with those of cathelicidin-2 and interleukin-8, which are produced by leukocytes. Furthermore, acetate promoted cathelicidin-2 and interleukin-8 secretion in leukocytes in vitro. These findings suggest that acetate and butyrate differentially upregulate antimicrobial component production in mammary glands, which could help to develop appropriate treatment for mastitis, thereby reducing economic losses and improving animal welfare in farming environments.


Subject(s)
Anti-Infective Agents , beta-Defensins , Acetates/pharmacology , Animals , Anti-Bacterial Agents , Butyric Acid/pharmacology , Female , Goats , Interleukin-8 , Lactation , Mammary Glands, Animal , Milk , Sodium Acetate/pharmacology
19.
J Poult Sci ; 59(2): 105-113, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35528386

ABSTRACT

The mucosa of the intestine and oviduct of hens are susceptible to pathogens. Pathogenic infections in the mucosal tissues of laying hens lead to worsened health of the host animal, decreased egg production, and bacterial contamination of eggs. Therefore, better understanding of the mechanisms underlying mucosal barrier function is needed to prevent infection by pathogens. In addition, pathogen infection in the mucosal tissue generally causes mucosal inflammation. Recently, it has been shown that inflammation in the oviduct and intestinal tissue caused by disruption of the mucosal barrier function, can affect egg production. Therefore, it is vitla to understand the relationship between mucosal barrier function and egg production to improve poultry egg production. This paper reviews the studies on (1) oviductal mucosal immune function and egg production, (2) intestinal inflammation and egg production, and (3) improvement of mucosal immune function by probiotics. The findings introduced in this review will contribute to the understanding of the mucosal barrier function of the intestine and oviduct and improve poultry egg production in laying hens.

20.
Vet Immunol Immunopathol ; 249: 110431, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35550249

ABSTRACT

Various antimicrobial components, such as lactoferrin, S100 calcium-binding protein A7 (S100A7), and IgA, produced by epithelial cells and leukocytes in lactating mammary glands are important for host defense against invading pathogens. Increase in milking frequency enhances milk yield in ruminants and implies an increase in frequency of teat stimulation. However, the influence of frequent teat stimulation on the production of antimicrobial components remains unclear. In this study, we investigated the effect of frequent teat stimulation, with and without milk removal, on the lactoferrin, S100A7, and IgA concentrations in milk of lactating Shiba goats in Japan. The lactoferrin, S100A7, and IgA concentrations in milk were measured using ELISA. We found that lactoferrin concentration decreased by frequent teat stimulation with milk removal, although concentrations of IgA and S100A7 increased. Frequent teat stimulation without milk removal also altered the lactoferrin, IgA, and S100A7 concentrations. Furthermore, frequent teat stimulation increased IL-22 concentration, which has been reported to upregulate S100A7 production in cultured human keratinocytes. Thus, these findings indicate that frequent teat stimulation, with or without milk removal, affects antimicrobial components in milk and may be useful for the prevention and treatment of mastitis in ruminants.


Subject(s)
Immunoglobulin A , Lactoferrin , Mammary Glands, Animal , Animals , Dairying , Female , Goats , Immunoglobulin A/analysis , Lactation , Lactoferrin/analysis , Mammary Glands, Animal/metabolism , Milk/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...